Memory Management

Today

+ Basic memory management
« Swapping

« Virtual memory

« TLBs

Next Time

Fabian E. Bustamante, Fall 2007

Memory management

« |deal memory for a programmer
— Large
— Fast
— Non volatile
— Cheap

» Nothing like that — memory hierarchy
— Small amount of fast, expensive memory — cache
— Some medium-speed, medium price main memory
— Gigabytes of slow, cheap disk storage

* Memory manager handles the memory hierarchy

EECS 343 Operating Systems
Northwestern University

Basic memory management

Two type of memory management systems
» With or without swapping or paging

Very basic: mono-programming w/o swapping or paging
Just one user program at a time + OS

OxFFF ... - BIOS
Operating Device /
system in drivers in ROM
ROM
User
program User
program
User
_ Operatin Some palmtops & ! P MSDOS
Mainframes & sypstem ir? embedded systems s;jstem ir?
minicomputers
i AN | RAM Early PCs
0 0 0

(@) (b) (c)

Except for simple embedded systems, this is history.

EECS 343 Operating Systems
Northwestern University

Multiprogramming w/ fixed partitions

« Multiprogramming — when one process is waiting for
/O, another one can use the CPU

» Two simple approaches
— Split memory in n parts (possible != sizes)
— Single or separate input queues for each partition
— ~IBM OS/360 — MFT: Multiprogramming with Fixed number of

Multiple
input queues 800K
[H - Partition 4 Partition 4
700K
Partition 3 ~ Single Partition 3
input queue
400K
|:|— Partition 2 Partition 2
200K
[CH_ H - Partition 1 Partition 1
- 100K -
Operating Operating
system 0 system

(a)

EECS 343 Operating Systems
Northwestern University

(b)

Modeling multiprogramming

» CPU utilization & multiprogramming
— Utilization as a function of # of processes in memory

— If process spends p% waiting for I/O

Probability all processes waiting for I/O at once: p"
CPU Utilization 1- p"

20% /0O wait
+ 100 |
8
= *) i
2 g0 |- 50% 1/0O wait
=
g 60 80% /O wait
™
S 40
5
g 20
O

| | I | | | | | | |
0 1 2 3 4 5 6 7 8 9 10

Degree of multiprogramming

EECS 343 Operating Systems
Northwestern University

Performance of a MP system

Computer w/ 32MB
16MB for OS & 4 processes (@ 4MB per process)
» With 80% avg. waiting time
CPU Utilization—1-0.84=1-0.41=0.6 :60%
* Add 16MB — 4 more user processes
CPU Utilization —1-0.882=0.83 :83% ... 38% increase

* Add 16MB — 4 more user processes
CPU Utilization —1-0.8'2=0.93 :93% ... 12% increase

b
8

% 1/O wait

40

CPU utilization (in percen

20

l]
9 10 M

| | |
5 6 7

Degree of multiprogramming

EECS 343 Operating Systems
Northwestern University

Two problems w/ multiprogramming

= Relocation and protection

— Don’t know where program will be loaded in memory
» Address locations of variables & code routines

— Keep a process out of other processes’ partitions

* IBM OS/MFT - modify instructions on the fly; split
memory into 2KB blocks & add key/code combination

* Use base and limit values (CDC 6600 & Intel 8088)

— address locations + base value — physical address

base base + limit

L 4
address es es
CPU = = Y < Y

no no

trap to operating system
monitor—addressing error memory

EECS 343 Operating Systems
Northwestern University

Swapping

« Not enough memory for all processes?
— Swapping
» Simplest
« Bring each process entirely
« Move another one to disk

« Compatible Time Sharing System
(CTSS) — a uniprogrammed
swapping system

Main memory Backing store

Swap out

— Virtual memory (your other option)
» Allow processes to be only partially in memory

EECS 343 Operating Systems
Northwestern University

Swapping

+ How is different from MFT?

— Much more flexible
» Size & number of partitions changes dynamically

— Higher memory utilization, but harder memory management

» Swapping in/out creates multiple holes
— Fragmentation ...

Space forAis
available, but not as
a single piece.

Operating Operating Operating Operating Operating Operating Operating Operating
System System System System System System System System

EECS 343 Operating Systems
Northwestern University

Fragmentation

» External Fragmentation — total memory space
exists to satisfy a request, but it is not
contiguous

» Reduce external fragmentation by compaction
— Shuffle contents to group free memory as one block

— Possible only if relocation is dynamic; done at
execution time

— |/O problem

 Latch job in memory while it is involved in I/O
* Do I/O only into OS buffers

* Too expensive (256MB machine, moving at 4B
per 40 nanosec. ~ 2.7sec!)

EECS 343 Operating Systems
Northwestern University

How much memory to allocate?

If process’ memory doesn’t grow — easy

» |n real world, memory needs change dynamically:
— Swapping to make space?
— Allocate more space to start with
* Internal Fragmentation — leftover memory is internal to a partition

— Remember what you used when swapping

» More than one growing area per processes
— Stack & data segment B-Stack
— If need more, same as before | ||} Roomfor grown

______ I } Room for growth

A-Program

Operating
system

EECS 343 Operating Systems
Northwestern University

Memory management

« With dynamically allocated memory
— OS must keep track of allocated/free memory
— Two general approaches - bit maps and linked lists

» Bit maps
— Divide memory into allocation units

— For each unit, a bit in the bitmap

— Design issues - Size of allocation unit
* The smaller the size, the larger the bitmap
* The larger the size, the bigger the waste

— Simple, but slow — T T ij

— find a big enough T /+ . T 7
chunk? V(ﬂ%

11111000
11111111
11001111
11111000

~ ~ |
EECS 343 Operating Systems
Northwestern University

Memory management with lists

Linked list of allocated/free space
» List ordered by address

» Double link will make your life easier
— Updating when a process is swapped out or terminates

PIX{P|— [P|H|P

P X H — P H H 1 IAI 1 y//// L1 IBI | I(.I: 1 / l/ 11 IIDI 1 IEI /%// :

A[x]P|— [R[H]P 8 ¢ *

HIl XIIHI — |HIHIH Pl|0]|5 | H|5]|3 »|P |86 | P |14
Keeping track of processes (H maAENEDENDDDENNE
and holes in the same list PN ¢

Hole Starts Length Process
at 18 2

EECS 343 Operating Systems
Northwestern University

Picking a place — different algorithms

» First fit — simple and fast
+ Next fit - ~ First fit but start where it left off

— Worst performance than First fit

» Best fit — try to waste the least
— More waste in tiny holes!

» Worst fit — try to “waste” the most
— Not too good either
» Speeding things up
— Two lists (free and allocated) — slows down deallocation
— Order the hole list — first fit ~ best fit
— Use the same holes to keep the list

— Quick fit — list of commonly used hole sizes
N lists for N different common sizes (4KB, 8KB, ...)
Allocation is quick, merging is expensive

EECS 343 Operating Systems
Northwestern University

Kernel memory allocation

Most OS manage memory as set of fixed-size pages
» Kernel maintains a list of free pages

* Page-level allocator has
— Two main routines: e.g get_page() & freepage() in SVR4

Physical
memory

Page-level
allocator
Kernel

— Two main clients: Paging system & KMA
Provides odd-size buffers to
various kernel subsystems
\ /
memory
allocator
Network Proc inodes, file User Block buffer
Buffers strutcures descriptors processes cache

EECS 343 Operating Systems
Northwestern University

Kernel memory allocation

* KMA's common users
— The pathname translation routine
— Proc structures, vnodes, file descriptor blocks, ...
» Since requests << page — page-level allocator is
Inappropriate
KMA & the page-level allocator
— Preallocates part of memory for the KMA

— Allow KMA to request memory
— Allow two-way exchange with the paging system
» Evaluation criteria
— Utilization memory — physical memory is limited after all
— Speed — it is used by various kernel subsystems
— Simple API
— Allow a two-way exchange with page-level allocator

EECS 343 Operating Systems
Northwestern University

KMA — Resource map allocator

Resource map — a set of <base, size> pairs
» [nitially the pool is described by a single pair

» ... after a few exchanges ... a list of entries per
contiguous free regions

» Allocate requests based on
— First fit, Best fit, Worst fit
» A simple interface

offset_t rmalloc(size);
void rmfree(base, size);

256,128
576,448 rmalloc(256) rmalloc(320)
]

rmfree(256,128)

EECS 343 Operating Systems
Northwestern University

Resource map allocator

* Pros
— Easy to implement
— Not restricted to memory allocation
— It avoid waste (although normally rounds up requests sizes for
simplicity)
— Client can release any part of the region
— Allocator coalesces adjacent free regions

» Cons
— After a while maps ended up fragmented — low utilization
— Higher fragmentation, longer map

— Map may need an allocator for its own entries
* How would you implement it?

— To coalesce regions, keep map sorted — expensive
— Linear search to find a free region large enough

EECS 343 Operating Systems
Northwestern University

KMA — Simple power-of-two free list

A set of free lists

» Each list keeps free buffers of a particular size (2¥)

+ Each buffer has one word header
— Pointer to next free buffer, if free or to
— Pointer to free list (or size), if allocated

) (= i1
2| 64
B | o —i——0
> 256 -
/| 512 -

EECS 343 Operating Systems
Northwestern University

KMA — Simple power-of-two free list

« Allocating(size)
— allocating (size + header) rounded up to next power of two
— Return pointer to first byte after header

» Freeing doesn’t require size as argument

— Move pointer back header-size to access header
— Put buffer in list

» [nitialize allocator by preallocating buffers or get pages
on demand; if it needs a buffer from an empty list ...
— Block request until a buffer is released
— Satisfy request with a bigger buffer if available
— Get a new page from page allocator

Power-of-two free lists

* Pros
— Simple and pretty fast (avoids linear search)
— Familiar programming interface (malloc, free)
— Free does not require size; easier to program with

» Cons
— Rounding means internal fragmentation

— As many requests are power of two and we loose header; a
lot of waste

— No way to coalesce free buffers to get a bigger one
— Rounding up may be a costly operation

EECS 343 Operating Systems
Northwestern University

Coming up ...

» The nitty-gritty details of virtual memory ...

* Some review questions:
— What are memory management goals?

— What is the difference between internal and
external fragmentation?

— What is the difference between a page and a
frame?

— Why do we need a KMA?

— How would you compare alternative KMA
algorithms?

EECS 343 Operating Systems
Northwestern University

	Memory Management
	Memory management	
	Basic memory management
	Multiprogramming w/ fixed partitions
	Modeling multiprogramming
	Performance of a MP system
	Two problems w/ multiprogramming
	Swapping
	Swapping
	Fragmentation
	How much memory to allocate?
	Memory management
	Memory management with lists
	Picking a place – different algorithms
	Kernel memory allocation
	Kernel memory allocation
	KMA – Resource map allocator	
	Resource map allocator
	KMA – Simple power-of-two free list	
	KMA – Simple power-of-two free list	
	Power-of-two free lists
	Coming up …

