
Fabián E. Bustamante, Fall 2007

Memory Management

Today
Basic memory management
Swapping
Virtual memory
TLBs

Next Time

EECS 343 Operating Systems
Northwestern University

2

Memory management

Ideal memory for a programmer
– Large
– Fast
– Non volatile
– Cheap

Nothing like that → memory hierarchy
– Small amount of fast, expensive memory – cache
– Some medium-speed, medium price main memory
– Gigabytes of slow, cheap disk storage

Memory manager handles the memory hierarchy

3

Basic memory management

Two type of memory management systems
With or without swapping or paging

Very basic: mono-programming w/o swapping or paging
Just one user program at a time + OS

Except for simple embedded systems, this is history.

BIOS

MSDOS
Mainframes &
minicomputers

Some palmtops &
embedded systems

Early PCs

EECS 343 Operating Systems
Northwestern University

4

Multiprogramming w/ fixed partitions

Multiprogramming – when one process is waiting for
I/O, another one can use the CPU
Two simple approaches
– Split memory in n parts (possible != sizes)
– Single or separate input queues for each partition
– ~IBM OS/360 – MFT: Multiprogramming with Fixed number of

Tasks

EECS 343 Operating Systems
Northwestern University

5

Modeling multiprogramming

CPU utilization & multiprogramming
– Utilization as a function of # of processes in memory
– If process spends p% waiting for I/O

Probability all processes waiting for I/O at once: pn

CPU Utilization 1- pn

Degree of multiprogramming

EECS 343 Operating Systems
Northwestern University

6

11 12
Degree of multiprogramming

Performance of a MP system

Computer w/ 32MB
16MB for OS & 4 processes (@ 4MB per process)

With 80% avg. waiting time
CPU Utilization – 1 – 0.84 = 1 – 0.41 = 0.6 : 60%

Add 16MB – 4 more user processes
CPU Utilization – 1 – 0.88 = 0.83 : 83% … 38% increase

Add 16MB – 4 more user processes
CPU Utilization – 1 – 0.812 = 0.93 : 93% … 12% increase

EECS 343 Operating Systems
Northwestern University

7

Two problems w/ multiprogramming

Relocation and protection
– Don’t know where program will be loaded in memory

• Address locations of variables & code routines
– Keep a process out of other processes’ partitions

IBM OS/MFT - modify instructions on the fly; split
memory into 2KB blocks & add key/code combination
Use base and limit values (CDC 6600 & Intel 8088)
– address locations + base value → physical address

EECS 343 Operating Systems
Northwestern University

8

Swapping

Not enough memory for all processes?
– Swapping

• Simplest
• Bring each process entirely
• Move another one to disk
• Compatible Time Sharing System

(CTSS) – a uniprogrammed
swapping system

– Virtual memory (your other option)
• Allow processes to be only partially in memory

EECS 343 Operating Systems
Northwestern University

Operating
System

User
Space

Main memory Backing store

Swap out

Swap in

Process
P1

Process
P2

9

Swapping

How is different from MFT?
– Much more flexible

• Size & number of partitions changes dynamically
– Higher memory utilization, but harder memory management

Swapping in/out creates multiple holes
– Fragmentation …

Operating
System

Operating
System

A

Operating
System

A

B

Operating
System

A

B

C

Operating
System

B

C

Operating
System

B

C

D
Operating

System

C

D
Operating

System

C

D

ASpace for A is
available, but not as

a single piece.

EECS 343 Operating Systems
Northwestern University

10

Fragmentation

External Fragmentation – total memory space
exists to satisfy a request, but it is not
contiguous
Reduce external fragmentation by compaction
– Shuffle contents to group free memory as one block
– Possible only if relocation is dynamic; done at

execution time
– I/O problem

• Latch job in memory while it is involved in I/O
• Do I/O only into OS buffers

Too expensive (256MB machine, moving at 4B
per 40 nanosec. ~ 2.7sec!)

EECS 343 Operating Systems
Northwestern University

11

How much memory to allocate?

If process’ memory doesn’t grow – easy
In real world, memory needs change dynamically:
– Swapping to make space?
– Allocate more space to start with

• Internal Fragmentation – leftover memory is internal to a partition
– Remember what you used when swapping

More than one growing area per processes
– Stack & data segment
– If need more, same as before

EECS 343 Operating Systems
Northwestern University

12

Memory management

With dynamically allocated memory
– OS must keep track of allocated/free memory
– Two general approaches - bit maps and linked lists

Bit maps
– Divide memory into allocation units
– For each unit, a bit in the bitmap
– Design issues - Size of allocation unit

• The smaller the size, the larger the bitmap
• The larger the size, the bigger the waste

– Simple, but slow
– find a big enough

chunk?

EECS 343 Operating Systems
Northwestern University

13

Memory management with lists

Linked list of allocated/free space
List ordered by address
Double link will make your life easier
– Updating when a process is swapped out or terminates

Keeping track of processes
and holes in the same list

P X P P H P

P X H P HH

PXH PHH

X H HH HH

EECS 343 Operating Systems
Northwestern University

14

Picking a place – different algorithms

First fit – simple and fast
Next fit - ~ First fit but start where it left off
– Worst performance than First fit

Best fit – try to waste the least
– More waste in tiny holes!

Worst fit – try to “waste” the most
– Not too good either

Speeding things up
– Two lists (free and allocated) – slows down deallocation
– Order the hole list – first fit ~ best fit
– Use the same holes to keep the list
– Quick fit – list of commonly used hole sizes

N lists for N different common sizes (4KB, 8KB, …)
Allocation is quick, merging is expensive

EECS 343 Operating Systems
Northwestern University

15

Kernel memory allocation

Most OS manage memory as set of fixed-size pages
Kernel maintains a list of free pages
Page-level allocator has
– Two main routines: e.g get_page() & freepage() in SVR4
– Two main clients: Paging system & KMA

Network
Buffers

Proc
strutcures

inodes, file
descriptors

User
processes

Block buffer
cache

Page-level
allocator

Kernel
memory
allocator

Paging
system

Physical
memory

Paging
system

Provides odd-size buffers to
various kernel subsystems

EECS 343 Operating Systems
Northwestern University

16

Kernel memory allocation

KMA’s common users
– The pathname translation routine
– Proc structures, vnodes, file descriptor blocks, …

Since requests << page → page-level allocator is
inappropriate
KMA & the page-level allocator
– Preallocates part of memory for the KMA
– Allow KMA to request memory
– Allow two-way exchange with the paging system

Evaluation criteria
– Utilization memory – physical memory is limited after all
– Speed – it is used by various kernel subsystems
– Simple API
– Allow a two-way exchange with page-level allocator

EECS 343 Operating Systems
Northwestern University

17

KMA – Resource map allocator

Resource map – a set of <base, size> pairs
Initially the pool is described by a single pair
… after a few exchanges … a list of entries per
contiguous free regions
Allocate requests based on
– First fit, Best fit, Worst fit

A simple interface
offset_t rmalloc(size);
void rmfree(base, size);

0, 1024 rmalloc(256)256, 768 rmalloc(320)576,448

rmfree(256,128)

256,128

EECS 343 Operating Systems
Northwestern University

18

Resource map allocator

Pros
– Easy to implement
– Not restricted to memory allocation
– It avoid waste (although normally rounds up requests sizes for

simplicity)
– Client can release any part of the region
– Allocator coalesces adjacent free regions

Cons
– After a while maps ended up fragmented – low utilization
– Higher fragmentation, longer map
– Map may need an allocator for its own entries

• How would you implement it?

– To coalesce regions, keep map sorted – expensive
– Linear search to find a free region large enough

EECS 343 Operating Systems
Northwestern University

19

KMA – Simple power-of-two free list

A set of free lists
Each list keeps free buffers of a particular size (2x)
Each buffer has one word header
– Pointer to next free buffer, if free or to
– Pointer to free list (or size), if allocated

EECS 343 Operating Systems
Northwestern University

32
64

128
256
512

20

KMA – Simple power-of-two free list

Allocating(size)
– allocating (size + header) rounded up to next power of two
– Return pointer to first byte after header

Freeing doesn’t require size as argument
– Move pointer back header-size to access header
– Put buffer in list

Initialize allocator by preallocating buffers or get pages
on demand; if it needs a buffer from an empty list …
– Block request until a buffer is released
– Satisfy request with a bigger buffer if available
– Get a new page from page allocator

21

Power-of-two free lists

Pros
– Simple and pretty fast (avoids linear search)
– Familiar programming interface (malloc, free)
– Free does not require size; easier to program with

Cons
– Rounding means internal fragmentation
– As many requests are power of two and we loose header; a

lot of waste
– No way to coalesce free buffers to get a bigger one
– Rounding up may be a costly operation

EECS 343 Operating Systems
Northwestern University

22

Coming up …

The nitty-gritty details of virtual memory …
Some review questions:
– What are memory management goals?
– What is the difference between internal and

external fragmentation?
– What is the difference between a page and a

frame?
– Why do we need a KMA?
– How would you compare alternative KMA

algorithms?

EECS 343 Operating Systems
Northwestern University

	Memory Management
	Memory management	
	Basic memory management
	Multiprogramming w/ fixed partitions
	Modeling multiprogramming
	Performance of a MP system
	Two problems w/ multiprogramming
	Swapping
	Swapping
	Fragmentation
	How much memory to allocate?
	Memory management
	Memory management with lists
	Picking a place – different algorithms
	Kernel memory allocation
	Kernel memory allocation
	KMA – Resource map allocator	
	Resource map allocator
	KMA – Simple power-of-two free list	
	KMA – Simple power-of-two free list	
	Power-of-two free lists
	Coming up …

