
Fabián E. Bustamante, Fall 2007

Interprocess Communication

Today
Race condition & critical regions
Mutual exclusion with busy waiting
Sleep and wakeup
Semaphores and monitors
Classical IPC problems

Next time
Deadlocks

EECS 343 Operating Systems
Northwestern University

2

Cooperating processes

Cooperating processes need to communicate
– Coop processes – can affect/be affected by others
Issues

1. How to pass information to another process?
2. How to avoid getting in each other’s ways?

• Two processes trying to get the last page of mem.
3. How to ensure proper sequencing when there are

dependencies?
• Process A produces data, while B prints it – B must wait for A

before starting to print

How about threads?
1. Easy
2 & 3. Pretty much the same

A: next_slotA ← in % 7

A: spooler_dir[next_slotA] ←file_nameA

A: in ←next_slotA + 1 % 8

B: next_slotB ← in % 8

B: spooler_dir[next_slotB] ←file_nameB

B: in ←next_slotB + 1 % 9

Switch

3

Race conditions

Many times cooperating process share memory
A common example – print spooler
– A process wants to print a file, enter file name in a special

spooler directory
– Printer daemon, another process, periodically checks the

directory, prints whatever file is there and removes the name

Race Condition:
– Two or more processes access (r/w) shared data
– Final results depends on order of execution

A: next_slotA ← in % 7

B: next_slotB ← in % 7

B: spooler_dir[next_slotB] ←file_nameB

B: in ←next_slotB + 1 % 8

A: spooler_dir[next_slotA] ←file_nameA

A: in ←next_slotA + 1 % 8

Switch

Switch

EECS 343 Operating Systems
Northwestern University

Process A

Process B

In: 7

Out: 4

4

Critical regions & mutual exclusion

Problem – race condition
Where in code? Critical region (CR)
We need a way to ensure that if a process is using a
shared item (e.g. a variable), other processes will be
excluded from doing it

Mutual exclusion
1. No two processes simultaneously in CR
But there’s more - a good solution must also ensure ...
2. No assumptions on speeds or numbers of CPUs
3. No process outside its CR can block another one
4. No process should wait forever to enter its CR

EECS 343 Operating Systems
Northwestern University

5

Ensuring mutual exclusion

Lock variable?
– Lock initially 0
– Process checks lock when entering CR
– Problem?

Disabling interrupts
– Simplest solution
– Problems?

• Users in control
• Multiprocessors?

– Use in the kernel

EECS 343 Operating Systems
Northwestern University

6

Strict alternation

Taking turns
– turn keeps track of whose turn it is to enter the CR

Problems?
– What if process 0 sets turn to 1, but it gets around to just

before its critical region before process 1 even tries?
– Violates conditions 3

Process 0 Process 1
while(TRUE) {
while(turn != 0);
critical_region0();
turn = 1;
noncritical_region0();

}

while(TRUE) {
while(turn != 1);
critical_region1();
turn = 0;
noncritical_region1();

}

EECS 343 Operating Systems
Northwestern University

7

Peterson’s solution
#define FALSE 0
#define TRUE 1
#define N 2 /* num. of processes */

int turn;
int interested[N];

void enter_region(int process)
{
int other;

other = 1 – process;
interested[process] = TRUE;
turn = process;
while (turn == process &&

interested[other] == TRUE);
}

void leave_region(int process)
{
interested[process] = FALSE;

}

EECS 343 Operating Systems
Northwestern University

Template of a process’
access to the critical
region (process 0):

…
enter_region(0);
<CR>
leave_region(0);
…

8

Tracing Peterson’s
Process 0 Common variables Process 1

enter_region(0)
other = 1
interested[0] = T
turn = 0

interested[0] = F
interested[1] = F, turn = ?

interested[0] = T,
interested[1] = F, turn = 0

(Process 0 in)

void enter_region(int process)
{
int other;
other = 1 – process;
interested[process] = TRUE;
turn = process;
while (turn == process &&

interested[other] == TRUE);
}

EECS 343 Operating Systems
Northwestern University

9

Tracing Peterson’s
Process 0 Common variables Process 1

void enter_region(int process)
{
int other;
other = 1 – process;
interested[process] = TRUE;
turn = process;
while (turn == process &&

interested[other] == TRUE);
} EECS 343 Operating Systems

Northwestern University

interested[0] = T
turn = 0

interested[0] = T
interested[1] = T, turn = 0
interested[0] = T
Interested[1] = T, turn = 1

turn = 1
<Busy Wait>

interested[0] = F,
interested[1] = T, turn = 1

turn != 0
<CR>
leave_region(0)
interested[0] = F

interested[0] = F,
Interested[1] = F, turn = 1

<CR>

enter_region(0)
other = 1

interested[0] = F
interested[1] = F, turn = ?

enter_region(1)
other = 0
interested[1] = T

interested[0] = T
interested[1] = T, turn = ?

10

TSL(test&set) -based solution

With a little help from hardware – TSL instruction
Atomically test & modify the content of a word

TSL REG, LOCK
– REG ← LOCK >> Read the content of variable LOCK into register REG
– LOCK ← non-zero value >> Set lock to a non-zero value

Entering and leaving CR

A lock that uses busy waiting – spin lock

enter_region:
TSL REGISTER, LOCK
CMP REGISTER, #0
JNE enter_region | non zero, lock set
RET | return to caller, you’re in

leave_region:
MOVE LOCK, #0
RET

EECS 343 Operating Systems
Northwestern University

Busy waiting

11

Busy waiting and priority inversion

Problems with Peterson and TSL-based approach?
– Waste CPU by busy waiting
– Can lead to priority inversion

• Two processes, H (high-priority) & L (low-priority)
• L gets into its CR
• H is ready to run and starts busy waiting
• L is never scheduled while H is running …
• So L never leaves its critical region and H loops forever!

Welcome to Mars!
– Mars Pathfinder

• Launched Dec. 4, 1996
• Landed July 4th, 1997

EECS 343 Operating Systems
Northwestern University

12

Problems in the Mars Pathfinder*
Periodically the system reset itself, loosing data
VxWork provides preemptive priority scheduling
Pathfinder software architecture
– An information bus with access controlled by a lock
– A bus management (B) high-priority thread
– A meteorological (M) low-priority, short-running thread

• If B thread was scheduled while the M thread was holding the
lock, the B thread busy waited on the lock

– A communication (C) thread running with medium priority
Sometimes, C was scheduled while B was waiting on M
After a bit of waiting, a watchdog timer would reset the system ☺
How would you fix it?
– Priority inheritance – the M thread inherits the priority of the B thread

blocked on it
– Actually supported by VxWork but dissabled!

EECS 343 Operating Systems
Northwestern University

*As explained by D. Wilner, CTO of Wind
River Systems, and narrated by Mike Jones

Producer

while (TRUE){
item = produce_item();
if (count == N) sleep();
insert_item(item);
++count;
if (count == 1)

wakeup(consumer)
}

w

}

Consumer

hile (TRUE){
if (count == 0) sleep();
item = remove_item();
--count;
if (count == (N -1))

wakeup(producer);
consume_item(item);

Producer

while (TRUE){
item = produce_item();
while (count == N);
insert_item(item);
++count;
if (count == 1)

wakeup(consumer)
}

w

}

Consumer

hile (TRUE){
while(count == 0);
item = remove_item();
--count;
if (count == (N -1))

wakeup(producer);
consume_item(item);

13

Sleep & wakeup

An alternative solution
– Sleep – causes the caller to block
– Wakeup – process pass as parameter is awakened

Producer-consumer (aka bounded buffer) example
– Two processes & one shared, fixed-size buffer

Consumer is not
yet logically sleep
- producer’s signal
is lost!

EECS 343 Operating Systems
Northwestern University

Consumer

Producer

14

Semaphores
A variable atomically manipulated by two operations –
down (P) & up (V)
Each semaphore has an associated queue of
processes/threads
– P/wait/down(sem)

• If sem was “available” (>0), decrement sem & let thread continue
• If sem was “unavailable” (<=0), place thread on associated

queue; run some other thread
– V/signal/up(sem)

• If thread(s) are waiting on the associated queue, unblock one
(place it on the ready queue)

• If no threads are waiting, increment sem
– The signal is “remembered” for next time up(sem) is called

• Might as well let the “up-ing” thread continue execution

Semaphores thus have history

EECS 343 Operating Systems
Northwestern University

Abstract implementation

down(S):
--S.value;
if (S.value < 0){

add this process to S.L;
block;

}

up(S):
S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);

}

With multiple CPUs – lock semaphore with TSL
But then how’s this different from previous busy-
waiting?

15

Semaphores

typedef struct {
int value;
struct process *L;

} semaphore;

EECS 343 Operating Systems
Northwestern University

16

Semaphores
Operation Value S.L.
P1 down -1 {P1}
P2 down -2 {P1,P2}
P3 up
P4 down
P1 down
P3 up
P2 up
P4 up
P3 up
P4 down

down(S):
--S.value;
if (S.value < 0){

add this process to S.L;
block;

}

up(S):
S.value++;
if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);

}

EECS 343 Operating Systems
Northwestern University

-1 {P2}
-2 {P2,P4}
-3 {P2,P4,P1}
-2 {P4,P1}
-1 {P1}
0 {}
1 {}
0 {}

17

Semaphores

Semaphores and I/O devices

Producer
while (TRUE){

item = produce_item();
down(empty);
down(mutex);
insert_item(item);
up(mutex);
up(full);

}

Consumer
while (TRUE){

down(full);
down(mutex);
item = remove_item();
up(mutex);
up(empty);
consume_item(item);

}

empty = # available slots, full = 0, mutex = 1

EECS 343 Operating Systems
Northwestern University

18

Mutexes

Two different uses of semaphores
– Synchronization – full & empty
– Mutex – used for mutual exclusion

Useful w/ thread packages
Other possible operation
mutex_trylock()

mutex_lock:
TSL REGISTER, MUTEX
CMP REGISTER, #0
JXE ok
CALL thread_yield
JMP mutex_lock

ok: RET

mutex_unlock:
MOVE MUTEX, #0

RET

EECS 343 Operating Systems
Northwestern University

19

Problems with semaphores

Can be used to solve all of the traditional
synchronization problems, but:
– Semaphores are essentially shared global variables

• Can be accessed from anywhere (bad software engineering)
– No connection bet/ the semaphore & the data controlled by it
– Used for both critical sections & for coordination (scheduling)
– No control over their use, no guarantee of proper usage

Producer
while (TRUE){

item = produce_item();
down(mutex);
down(empty);
insert_item(item);
up(mutex);
up(full);

}

Consumer
while (TRUE){

down(full);
down(mutex);
item = remove_item();
up(mutex);
up(empty);
consume_item(item);

}

What happens if
the buffer is full?

EECS 343 Operating Systems
Northwestern University

20

Monitors

Monitors - higher level synchronization primitive
– A programming language construct

• Collection of procedures, variables and data structures
– Monitor’s internal data structures are private

Monitors and mutual exclusion
– Only one process active at a time - how?
– Synchronization code is added by the compiler

EECS 343 Operating Systems
Northwestern University

Operations (procedures)

Shared data

At most one thread in the
monitor at any given time

Queue of threads waiting
to get into the monitor

21

Monitors

Once inside a monitor, a process/thread may discover
it can’t continue, and want to wait, or inform another
one that some condition has been satisfied
To enforce sequences of events? Condition variables
– Two operations – wait & signal

– Condition variables can only be accessed from
within the monitor

– A thread that waits “steps outside” the monitor (to a
wait queue associated with that condition variable)

– What happen after the signal?
• Hoare – process awakened run, the other one is suspended
• Brinch Hansen – process doing the signal must exit the monitor
• Third option? Mesa programming language

– Wait is not a counter – signal may get lost

EECS 343 Operating Systems
Northwestern University

22

Producer-consumer with monitors

Why is OK here and
not with

sleep/wakeup?

The consumer could never run before
the wait completes!

EECS 343 Operating Systems
Northwestern University

23

Producer-consumer with message passing

IPC in distributed
systems
Message passing
send(dest, &msg)
recv(src, &msg)

Design issues
– Lost messages: acks
– Duplicates: sequence

#s
– Naming processes
– Performance
– …

EECS 343 Operating Systems
Northwestern University

#define N 100 /* num. of slots in buffer */

void producer(void)
{

int item; message m;

while(TRUE) {
item = produce_item();
receive(consumer, &m);
build_message(&m, item);
send(consumer, &m);

}
}

void consumer(void)
{

int item, i; message m;

for(i = 0; i < N; i++) send(producer, &m);

while(TRUE) {
receive(producer, &m);
item = extract_item(&m);
send(producer, &m);
consume_item(item);

}
}

24

Readers-writers problem
Model access to database
One shared database
Multiple readers allowed at
once
If writers is in, nobody else is

void writer(void)
{

while(TRUE) {
think_up_data();
down(&db);
write_db();
up(&db);

}
}

void reader(void)
{

while(TRUE) {
down(&mutex);
++rc;
if (rc == 1) down(&db);
up(&mutex);

read_db();

down(&mutex);
--rc;
if (rc == 0) up(&db);
up(&mutex);

use_data();
}

}

What problem do you see for the writer?

EECS 343 Operating Systems
Northwestern University

Idea for a solution: When a reader arrives, if there’s a writer
waiting, the reader could be suspended behind the writer
instead of being immediately admitted.

25

Dining philosophers problem

Philosophers eat/think
To eat, a philosopher needs 2 chopsticks
Picks one at a time
How to prevent deadlock

#define N 5

void philosopher(int i)
{

while (TRUE) {
think();
take_chopstick(i);
take_chopstick((i+1)%N);
eat();
put_chopstick(i);
put_chopstick((i+1)%N);

}
}

Nonsolution

Why not just
protect all this
with a mutex?

Now: Everybody takes
the left chopstick!

EECS 343 Operating Systems
Northwestern University

26

Dining philosophers example
void philosopher(int i)
{
while(TRUE) {
think();
take_chopstick(i);
eat();
put_chopstick(i);

}
}

void test(int i)
{
if ((state[i] == hungry &&

state[LEFT] != eating &&
state[RIGHT] != eating) {
state[i] = EATING;
up(&s[i]);

}
}

state[] – too keep track of philosopher’s
state (eating, thinking, hungry)
s[] – array of semaphores, one per philosopher

EECS 343 Operating Systems
Northwestern University

void take_chopstick(int i)
{

down(&mutex);
state[i] = HUNGRY;
test(i);
up(&mutex);
down(&s[i]);

}

void put_chopstick(int i)
{
down(&mutex);
state[i] = THINKING;
test(LEFT);
test(RIGHT);
up(&mutex);

}

27

The sleeping barber problem

One barber, one barber chair and n chairs
for waiting customers …

No customers,
take a nap.

Arriving
customer wakes
up the barber.

Additional customers
arriving while barber’s
busy – either wait or

leave.

EECS 343 Operating Systems
Northwestern University

28

The sleeping barber problem

#define CHAIRS 5

void barber (void)
{

while (TRUE) {
…
…
/* sleep if no customers */
--waiting;
…
…
cut_hair();

}
}

void customer (void)
{

…
if (waiting < CHAIRS) {

++waiting; /* sit down */
…
…
…
get_haircut();

} else { /* go elsewhere */
…

}
}

Semaphores:
- Customer - count waiting customers (excluding the

one in the barber chair)
- Barbers – number of barbers who are idle
- mutex – for mutual exclusion

EECS 343 Operating Systems
Northwestern University

29

The sleeping barber problem

#define CHAIRS 5

void barber (void)
{

while (TRUE) {
down(&customers);
/* sleep if no customers */
down(&mutex);
--waiting;
up(&barbers);
up(&mutex);
cut_hair();

}
}

void customer (void)
{

…
if (waiting < CHAIRS) {

++waiting; /* sit down */
…
…
…
get_haircut();

} else { /* go elsewhere */
…

}
}

EECS 343 Operating Systems
Northwestern University

Semaphores:
- Customer - count waiting customers (excluding the

one in the barber chair)
- Barbers – number of barbers who are idle
- mutex – for mutual exclusion

30

The sleeping barber problem

#define CHAIRS 5

void barber (void)
{

while (TRUE) {
down(&customers);
/* sleep if no customers */
down(&mutex);
--waiting;
up(&barbers);
up(&mutex);
cut_hair();

}
}

void customer (void)
{

down(&mutex);
if (waiting < CHAIRS) {

++waiting; /* sit down */
up(&customers);
up(&mutex);
down(&barbers);
get_haircut();

} else { /* go elsewhere */
up(&mutex);

}
}

EECS 343 Operating Systems
Northwestern University

Semaphores:
- Customer - count waiting customers (excluding the

one in the barber chair)
- Barbers – number of barbers who are idle
- mutex – for mutual exclusion

31

Coming up

Deadlocks
How deadlock arise and what you can do about them

EECS 343 Operating Systems
Northwestern University

32

Monitors in Java

EECS 343 Operating Systems
Northwestern University

33

Monitors in Java

EECS 343 Operating Systems
Northwestern University

34

Barriers

To synchronize groups of processes
Type of applications
– Execution divided in phases
– Process cannot go into new phase until all can

e.g. Temperature propagation in a material

EECS 343 Operating Systems
Northwestern University

	Interprocess Communication
	Cooperating processes
	Race conditions
	Critical regions & mutual exclusion	
	Ensuring mutual exclusion
	Strict alternation
	Peterson’s solution
	Tracing Peterson’s
	Tracing Peterson’s
	TSL(test&set) -based solution
	Busy waiting and priority inversion
	Problems in the Mars Pathfinder*
	Sleep & wakeup
	Semaphores
	Semaphores
	Semaphores
	Semaphores
	Mutexes
	Problems with semaphores
	Monitors
	Monitors
	Producer-consumer with monitors
	Producer-consumer with message passing
	Readers-writers problem
	Dining philosophers problem
	Dining philosophers example
	The sleeping barber problem
	The sleeping barber problem
	The sleeping barber problem
	The sleeping barber problem
	Coming up
	Monitors in Java
	Monitors in Java
	Barriers

