
Fabián E. Bustamante, Fall 2007

Scheduling

Today
Introduction to scheduling
Classical algorithms
Thread scheduling
Evaluating scheduling
OS example

Next Time
Process interaction & communication

Scheduling

Problem
– Several ready processes & fewer CPUs than processes

A choice has to be made
– By the scheduler, using a scheduling algorithm

Scheduling through time
– Early batch systems – Just run the next job in the tape
– Early timesharing systems – Scarce CPU time so scheduling

is critical
– Personal computers – Commonly one active process so

scheduling is easy; with fast & per-user CPU so scheduling is
not critical

– Networked workstations and servers – All back again, multiple
competing processes ready & expensive CS, scheduling is
critical

EECS 343 Operating Systems
Northwestern University

2

3

Process behavior

Bursts of CPU usage alternate with periods of I/O wait
– CPU-bound process
– I/O bound process

As CPU gets faster – more I/O bound processes

Histogram of CPU-burst times

Large number of
short CPU bursts

Small number of
long CPU bursts

EECS 343 Operating Systems
Northwestern University

4

Multilevel scheduling

(Job Scheduler)

These two determine the
degree of multiprogramming

(1)
(2)

(3)

Batch systems allow scheduling at 3 levels

Look for mix of CPU- &
I/O-bound jobs or
Shortest job first

Too many processes & not
enough memory – swap
somebody out; when there’s
room: which one to bring in?

Select a ready
process and allocate
the CPU to it

EECS 343 Operating Systems
Northwestern University

5

When to schedule?
1. At process creation
2. When a process exits
3. When a process blocks on I/O, a semaphore, …
4. When an I/O interrupts occurs
5. At fixed periods of time

Preemptive and non-preemptive schedulers
No-preemptive: once the CPU has been allocated, it is not release until
the process terminates or switches to waiting

Need a HW clock interrupting

new

ready

admitted interrupt

running

dispatched

terminatedexit

waiting
I/O or

event wait
I/O or event
completion

(1) (2)

(3)

(4)

(4)

EECS 343 Operating Systems
Northwestern University

6

Dispatcher

Dispatcher module gives control of CPU to process
selected by short-term scheduler
– switching context
– switching to user mode
– jumping to proper location in user program to restart it

Dispatch latency – time it takes for dispatcher to stop
one process and start another running

EECS 343 Operating Systems
Northwestern University

7

Environments and goals

Different scheduling algorithms for different
application areas
Worth distinguishing
– Batch
– Interactive
– Real-time

All systems
– Fairness – comparable processes getting

comparable service
– Policy enforcement – seeing that stated policy is

carried out
– Balance – keeping all parts of the system busy (mix

pool of processes)

EECS 343 Operating Systems
Northwestern University

8

Environments and goals

Batch systems
– Throughput – max. jobs per hour
– Turnaround time – min. time bet/ submission & termination

• Waiting time – sum of periods spent waiting in ready queue
– CPU utilization – keep the CPU busy all time

Interactive systems
– Response time – respond to requests quickly (time to start

responding)
– Proportionality – meet users’ expectations

Real-time system
– Meeting deadlines – avoid losing data
– Predictability – avoid quality degradation in multimedia

systems

Average, maximum, minimum or variance?

EECS 343 Operating Systems
Northwestern University

9

First-Come First-Served scheduling

First-Come First-Served
– Simplest, easy to implement, non-preemptive
– Problem:

• 1 CPU-bound process (burst of 1 sec.)
• Many I/O-bound ones (needing to read 1000 records to

complete)
• Each I/O-bound process reads one block per sec!

CPU

I/O

EECS 343 Operating Systems
Northwestern University

10

FCFS scheduling

Order of arrival: P1 , P2 , P3
Gantt Chart for schedule

Order of arrival: P2 , P3 , P1
Gantt chart for schedule is

Process Burst
Time

P1 24

P2 3

P3 3

P1P3P2

63 300

Waiting times: P1 = 0; P2 = 24; P3 = 27
Average waiting time: (0 + 24 + 27)/3 = 17

Waiting times: P1 = 6; P2 = 0; P3 = 3
Average waiting time: (6 + 0 + 3)/3 = 3

P1 P2 P3

24 27 300

Preempetive or not?

EECS 343 Operating Systems
Northwestern University

11

Shortest Job/Remaining Time First sched.

Shortest-Job First
– Assumption – total time needed (or length of next

CPU burst) is known
– Provably optimal

First job finishes at time a
Second job at time a + b
…

Mean turnaround time
(4a + 3 b + 2c + d)/4

A preemptive variation – Shortest Remaining
Time (or SRPT)

Job # Finish time

1 a

2 b

3 c

4 d

Biggest
contributor

Preempetive or not?

EECS 343 Operating Systems
Northwestern University

12

SJF Non-preemptive

SRT Preemptive

SJF and SRT

P1 P3 P2

73 160

P4

8 12

Process Arrival Burst
Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4
P1 P3P2

42 110

P4

5 7

P2 P1

16

avg. waiting time = (9 + 1 + 0 +2)/4 = 3

avg. waiting time = (0 + 6 + 3 + 7)/4 = 4

EECS 343 Operating Systems
Northwestern University

13

Determining length of next CPU burst

Can only estimate length
Can be done using length of previous CPU
bursts and exponential averaging

:Define -
10 , -

burst CPUnext for the valuepredicted -
burst CPU oflenght actual -

1

≤≤
=

=

+

αα
τ n

th
n nt

() .1 1 nnn t ταατ −+==

Most recent
information

Past history

Weight of history

EECS 343 Operating Systems
Northwestern University

14

Examples of Exponential Averaging

α =0
– τn+1 = τn

– Recent history does not count

α =1
– τn+1 = tn
– Only the actual last CPU burst counts

If we expand the formula, we get:

τn+1 = α tn+(1 - α)α tn -1 + …+(1 - α)j α tn -j + …+(1 - α)n +1 τ0

Since both α and (1 - α) are less than or equal to 1,
each successive term has less weight than its
predecessor

() .1 1 nnn t ταατ −+=+

EECS 343 Operating Systems
Northwestern University

15

Priority scheduling

SJF is a special case of priority-based scheduling
– Priority = reverse of predicted next CPU burst

Pick process with highest priority (lowest number)
Problem
– Starvation – low priority processes

may never execute

Solution:
– Aging → increases priority (Unix’s nice)
– Assigned maximum quantum

Process Burst
time

Priority

P1 10 3

P2 1 1

P3 2 4

P4
P5

1
5

5
2

avg. waiting time = (6 + 0 + 16 +18 + 1)/5 = 8.2

P2 P5

610

P1 P3 P4

16 18

EECS 343 Operating Systems
Northwestern University

16

Round-robin scheduling

Simple, fair, easy to implement, & widely-used
Each process gets a fix quantum or time slice
When quantum expires, if running preempt CPU
With n processes & quantum q, each one gets 1/n of
the CPU time, no-one waits more than (n-1) q

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

Process Burst
Time

P1 24
P2 3
P3 3

q = 4

avg. waiting time = (6 + 4 +7)/3 = 5.66

Preempetive or not?

EECS 343 Operating Systems
Northwestern University

17

Quantum & Turnaround time

Length of quantum
– Too short – low CPU efficiency (why?)
– Too long – low response time

(really long, what do you get?)

– Commonly ~ 50-100 msec.

Largest quantums
don’t imply shortest

turnaround times

EECS 343 Operating Systems
Northwestern University

18

Combining algorithms

In practice, any real system uses some hybrid
approach, with elements of each algorithm
Multilevel queue
– Ready queue partitioned into separate queues
– Each queue has its own scheduling algorithm
– Scheduling must be done between the queues

• Fixed priority scheduling; (i.e., foreground first); starvation?
• Time slice – each queue gets a certain amount of CPU time which it can

schedule amongst its processes

System processes

Interactive processes

Interactive editing processes

Batch processes

Highest
priority

Lowest
priority

EECS 343 Operating Systems
Northwestern University

19

Multiple (feedback) queues

Multiple queues & allow processes to move between
queues
Example CTSS – Idea: separate processes based on
CPU bursts
– 7094 had only space for 1 process in memory (switch = swap)
– Goals: low context switching cost & good response time
– Priority classes: class i gets 2i quantas (i: 0 …)
– Scheduler executes first all processes in queue 0; if empty, all

in queue 1, …
– If process uses all its quanta → move to next lower queue

(leave I/O-bound & interact. processes in high-priority queue)
– What about process with long start but interactive after that?

Carriage-return hit → promote process to top class ☺

EECS 343 Operating Systems
Northwestern University

20

Some other algorithms
Guaranteed scheduling - e.g. proportional to #
processes
– Priority = amount used / amount promised
– Lower ratio → higher priority

Lottery scheduling – simple & predictable
– Each process gets lottery tickets for resources (CPU time)
– Scheduling – lottery, i.e. randomly pick a ticket
– Priority – more tickets means higher chance
– Processes may exchange tickets

Fair-Share scheduling –
– Schedule aware of ownership
– Owners get a % of CPU, processes are picked to enforce it

EECS 343 Operating Systems
Northwestern University

21

Real-time scheduling

Different categories
– Hard RT – no on time ~ not at all
– Soft RT – important to meet guarantees but not critical

Scheduling can be static or dynamic
Schedulable real-time system
– m periodic events
– event i occurs within period Pi and requires Ci seconds

Then the load can only be handled if

1
1

m
i

i i

C
P=

≤∑
P1: C = 50 msec, P = 100msec (.5)
P2: C = 30 msec, P = 200msec (.15)
P3: C = 100 msec, P = 500msec (.2)
P4: C = 200 msec, P= 1000msec (.2)

EECS 343 Operating Systems
Northwestern University

22

Multiple-processor scheduling
Scheduling more complex w/ multiple CPUs
(assuming homogeneous processors)
Asymmetric/symmetric (SMP) multiprocessing
– Supported by most OSs (common or independent ready

queues)
Processor affinity – benefits of past history in a
processor
Load balancing – keep workload evenly distributed
– Push migration – specific task periodically checks load in

processors & pushes processes for balance
– Pull migration – idle processor pulls processes from busy one

Symmetric multithreading (hyperthreading or SMT)
– Multiple logical processors on a physical one
– Each w/ own architecture state, supported by hardware
– Shouldn’t require OS to know about it (but could benefit from)

EECS 343 Operating Systems
Northwestern University

Scheduling the server-side of P2P systems
The response time experienced by users of P2P data sharing
services is dominated by the downloading process.

– >80% of all download requests in Kazaa are rejected due to capacity
saturation at server peers

– >50% of all requests for large objects (>100MB) take more than one day &
~20% take over one week to complete

Most implementations
use FCFS or PS
Apply SRPT! Work by
Qiao et al. @ Nortwestern

23

PS – Process Sharing
FCFS – First-Come First-Serve
SRPT – Shortest-Remaining Processing-Time

Mean response time of
object download as a
function of system load.

EECS 343 Operating Systems
Northwestern University

24

Thread scheduling

Now add threads – user or kernel level?
User-level (process-contention scope)
– Context switch is cheaper
– You can have an application-specific scheduler at user level
– Kernel doesn’t know of your threads

Kernel-level (system-contention scope)
– Any scheduling of threads is possible (since the kernel knows

of all)
– Switching threads inside same process is cheaper than

switching processes

EECS 343 Operating Systems
Northwestern University

25

Pthread scheduling API
#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5

/* Each thread begin control in this function */
void *runner(void *param)
{

printf("I am a thread\n");
pthread exit(0);

}

int main(int argc, char *argv[])
{

int i;
pthread_t tid[NUM THREADS]; pthread_attr_t attr;

pthread_attr_init(&attr); /* get the default attributes */
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM); /* set the sched algo */
pthread_attr_setschedpolicy(&attr, SCHED_OTHER); /* set the sched policy */

for (i = 0; i < NUM_THREADS; i++) /* create the threads */
pthread_create(&tid[i],&attr,runner,NULL);

for (i = 0; i < NUM_THREADS; i++) /* now join on each thread */
pthread_join(tid[i], NULL);

}

EECS 343 Operating Systems
Northwestern University

26

Policy vs. mechanism

Separate what is done from how it is done
– Think of parent process with multiple children
– Parent process may knows relative importance of children (if,

for example, each one has a different task)

None of the algorithms presented take the parent
process input for scheduling
Scheduling algorithm parameterized
– Mechanism in the kernel

Parameters filled in by user processes
– Policy set by user process
– Parent controls scheduling w/o doing it

EECS 343 Operating Systems
Northwestern University

27

Algorithm evaluation

First problem: criteria to be used in selection
– E.g. Maximize CPU utilization, but w/ max. response time of 1

sec.
Evaluation forms
– Analytic evaluation - deterministic modeling:

• Given workload & algorithm → number or formula
• Simple & fast, but workload specific

– Queueing models
• Computer system described as a network of servers
• Load characterized by distributions
• Applicable to limited number of algorithms – complicated maths

& questionable assumptions
– Simulations

• Distribution-driven or trace-based
– Implementation

• Highly accurate & equally expensive

EECS 343 Operating Systems
Northwestern University

28

Next time

Process synchronization
– Race condition & critical regions
– Software and hardware solutions
– Review of classical synchronization problems
– …

What really happened in Mars?
http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html

EECS 343 Operating Systems
Northwestern University

29

OS examples – Linux
Preemptive, priority-based scheduling
– Two separate priority ranges (real-time [0,99] & nice

[100,140]) mapping to a global priority scheme
Two algorithms: time-sharing and real-time
Time-sharing
– Prioritized credit-based – process w/ most credits is

scheduled next
– Credit subtracted when timer interrupt occurs
– When credit = 0, another process chosen
– When all processes have credit = 0, re-crediting occurs

• Based on factors including priority and history
(Soft) Real-time
– Static priority for RT tasks
– Two classes

• FCFS (2+ task w/ = priority RR) and RR (FCFS w/ quantum)
• Highest priority process always runs first

EECS 343 Operating Systems
Northwestern University

30

OS examples – Linux (Ingo Molnar’s O(1))
Perfect SMP scalability & improved SMP affinity
O(1) scheduling – constant-time, regardless of # of running
processes
– One runqueue per processor
– Two priority arrays per

• Active – tasks w/ remaining quantum
• Expired – tasks w/ …

– Each priority array includes 1 queue of runnable processes per
priority level

– Recalculation of task’s dynamic priority done when task has
exhausted its time quantum & moved to expired

– When active is empty – swap

EECS 343 Operating Systems
Northwestern University

	Scheduling
	Scheduling
	Process behavior
	Multilevel scheduling
	When to schedule?
	Dispatcher
	Environments and goals
	Environments and goals
	First-Come First-Served scheduling
	FCFS scheduling
	Shortest Job/Remaining Time First sched.
	SJF and SRT
	Determining length of next CPU burst
	Examples of Exponential Averaging
	Priority scheduling
	Round-robin scheduling
	Quantum & Turnaround time
	Combining algorithms
	Multiple (feedback) queues
	Some other algorithms
	Real-time scheduling
	Multiple-processor scheduling
	Scheduling the server-side of P2P systems
	Thread scheduling
	Pthread scheduling API
	Policy vs. mechanism
	Algorithm evaluation
	Next time
	OS examples – Linux
	OS examples – Linux (Ingo Molnar’s O(1))

