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Scheduling

Problem
– Several ready processes & fewer CPUs than processes

A choice has to be made
– By the scheduler, using a scheduling algorithm

Scheduling through time
– Early batch systems – Just run the next job in the tape
– Early timesharing systems – Scarce CPU time so scheduling 

is critical
– Personal computers – Commonly one active process so 

scheduling is easy; with fast & per-user CPU so scheduling is 
not critical

– Networked workstations and servers – All back again, multiple 
competing processes ready & expensive CS, scheduling is 
critical
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Process behavior

Bursts of CPU usage alternate with periods of I/O wait
– CPU-bound process
– I/O bound process

As CPU gets faster – more I/O bound processes

Histogram of CPU-burst times

Large number of 
short CPU bursts

Small number of 
long CPU bursts
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Multilevel scheduling

(Job Scheduler)

These two determine the 
degree of multiprogramming

(1)
(2)

(3)

Batch systems allow scheduling at 3 levels

Look for mix of CPU- & 
I/O-bound jobs or
Shortest job first

Too many processes & not 
enough memory – swap 
somebody out; when there’s 
room: which one to bring in?

Select a ready 
process and allocate 
the CPU to it
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When to schedule?
1. At process creation
2. When a process exits
3. When a process blocks on I/O, a semaphore, …
4. When an I/O interrupts occurs
5. At fixed periods of time

Preemptive and non-preemptive schedulers
No-preemptive: once the CPU has been allocated, it is not release until 
the process terminates or switches to waiting

Need  a HW clock interrupting

new

ready

admitted interrupt

running

dispatched

terminatedexit

waiting
I/O or 

event wait
I/O or event 
completion

(1) (2)

(3)

(4)

(4)
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Dispatcher

Dispatcher module gives control of CPU to process 
selected by short-term scheduler
– switching context
– switching to user mode
– jumping to proper location in user program to restart it

Dispatch latency – time it takes for dispatcher to stop 
one process and start another running
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Environments and goals

Different scheduling algorithms for different 
application areas
Worth distinguishing
– Batch
– Interactive
– Real-time 

All systems
– Fairness – comparable processes getting 

comparable service
– Policy enforcement – seeing that stated policy is 

carried out
– Balance – keeping all parts of the system busy (mix 

pool of processes)
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Environments and goals

Batch systems
– Throughput – max. jobs per hour
– Turnaround time – min. time bet/ submission & termination

• Waiting time – sum of periods spent waiting in ready queue
– CPU utilization – keep the CPU busy all time

Interactive systems
– Response time – respond to requests quickly (time to start 

responding)
– Proportionality – meet users’ expectations

Real-time system
– Meeting deadlines – avoid losing data
– Predictability – avoid quality degradation in multimedia 

systems

Average, maximum, minimum or variance?
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First-Come First-Served scheduling

First-Come First-Served
– Simplest, easy to implement, non-preemptive
– Problem: 

• 1 CPU-bound process (burst of 1 sec.) 
• Many I/O-bound ones (needing to read 1000 records to 

complete)
• Each I/O-bound process reads one block per sec!

CPU

I/O
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FCFS scheduling

Order of arrival: P1 , P2 , P3
Gantt Chart for schedule

Order of arrival: P2 , P3 , P1
Gantt chart for schedule is

Process Burst 
Time

P1 24

P2 3

P3 3

P1P3P2

63 300

Waiting times: P1  = 0; P2  = 24; P3 = 27
Average waiting time:  (0 + 24 + 27)/3 = 17

Waiting times: P1 = 6; P2 = 0; P3 = 3
Average waiting time:   (6 + 0 + 3)/3 = 3

P1 P2 P3

24 27 300

Preempetive or not?
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Shortest Job/Remaining Time First sched.

Shortest-Job First
– Assumption – total time needed (or length of next 

CPU burst) is known
– Provably optimal

First job finishes at time a
Second job at time a + b
…

Mean turnaround time
(4a + 3 b + 2c + d)/4

A preemptive variation – Shortest Remaining 
Time (or SRPT)

Job # Finish time

1 a

2 b

3 c

4 d

Biggest 
contributor

Preempetive or not?
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SJF Non-preemptive 

SRT Preemptive

SJF and SRT

P1 P3 P2

73 160

P4

8 12

Process Arrival Burst 
Time

P1 0.0 7

P2 2.0 4

P3 4.0 1

P4 5.0 4
P1 P3P2

42 110

P4

5 7

P2 P1

16

avg. waiting time = (9 + 1 + 0 +2)/4 = 3

avg. waiting time = (0 + 6 + 3 + 7)/4 = 4
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Determining length of next CPU burst

Can only estimate length
Can be done using length of previous CPU 
bursts and exponential averaging

:Define -
10 , -

burst  CPUnext  for the  valuepredicted  -
burst  CPU  oflenght  actual -

1

≤≤
=

=

+

αα
τ n

th
n nt

( ) .1 1 nnn t ταατ −+==

Most recent 
information

Past history

Weight of history
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Examples of Exponential Averaging

α =0
– τn+1 = τn

– Recent history does not count

α =1
– τn+1 = tn
– Only the actual last CPU burst counts

If we expand the formula, we get:

τn+1 = α tn+(1 - α)α tn -1 + …+(1 - α )j α tn -j + …+(1 - α )n +1 τ0

Since both α and (1 - α) are less than or equal to 1, 
each successive term has less weight than its 
predecessor

( ) .1 1 nnn t ταατ −+=+
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Priority scheduling

SJF is a special case of priority-based scheduling
– Priority = reverse of predicted next CPU burst

Pick process with highest priority (lowest number)
Problem
– Starvation – low priority processes 

may never execute

Solution:
– Aging → increases priority (Unix’s nice)
– Assigned maximum quantum

Process Burst 
time

Priority

P1 10 3

P2 1 1

P3 2 4

P4
P5

1
5

5
2

avg. waiting time = (6 + 0 + 16 +18 + 1)/5 = 8.2

P2 P5

610

P1 P3 P4

16 18

EECS 343 Operating Systems
Northwestern University



16

Round-robin scheduling

Simple, fair, easy to implement, & widely-used
Each process gets a fix quantum or time slice
When quantum expires, if running preempt CPU
With n processes & quantum q, each one gets 1/n of 
the CPU time, no-one waits more than (n-1) q

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

Process Burst 
Time

P1 24
P2 3
P3 3

q = 4

avg. waiting time = (6 + 4 +7)/3 = 5.66

Preempetive or not?
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Quantum & Turnaround time

Length of quantum
– Too short – low CPU efficiency (why?)
– Too long – low response time 

(really long, what do you get?)

– Commonly ~ 50-100 msec.

Largest quantums 
don’t imply shortest 

turnaround times
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Combining algorithms

In practice, any real system uses some hybrid 
approach, with elements of each algorithm
Multilevel queue
– Ready queue partitioned into separate queues
– Each queue has its own scheduling algorithm
– Scheduling must be done between the queues

• Fixed priority scheduling; (i.e., foreground first); starvation?
• Time slice – each queue gets a certain amount of CPU time which it can 

schedule amongst its processes

System processes

Interactive processes

Interactive editing processes

Batch processes

Highest 
priority

Lowest 
priority
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Multiple (feedback) queues

Multiple queues & allow processes to move between 
queues
Example CTSS – Idea: separate processes based on 
CPU bursts
– 7094 had only space for 1 process in memory (switch = swap)
– Goals:  low context switching cost & good response time
– Priority classes: class i gets 2i quantas (i: 0 … )
– Scheduler executes first all processes in queue 0; if empty, all 

in queue 1, …
– If process uses all its quanta → move to next lower queue

(leave I/O-bound & interact. processes in high-priority queue)
– What about process with long start but interactive after that?

Carriage-return hit → promote process to top class ☺
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Some other algorithms
Guaranteed scheduling - e.g. proportional to # 
processes
– Priority = amount used / amount promised
– Lower ratio → higher priority

Lottery scheduling – simple & predictable
– Each process gets lottery tickets for resources (CPU time)
– Scheduling – lottery, i.e. randomly pick a ticket
– Priority – more tickets means higher chance
– Processes may exchange tickets

Fair-Share scheduling –
– Schedule aware of ownership
– Owners get a % of CPU, processes are picked to enforce it
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Real-time scheduling

Different categories
– Hard RT – no on time ~ not at all
– Soft RT – important to meet guarantees but not critical

Scheduling can be static or dynamic
Schedulable real-time system
– m periodic events
– event i occurs within period Pi and requires Ci seconds

Then the load can only be handled if

1
1

m
i

i i

C
P=

≤∑
P1: C = 50 msec, P = 100msec (.5)
P2: C = 30 msec, P = 200msec (.15)
P3: C = 100 msec, P = 500msec (.2)
P4: C = 200 msec, P= 1000msec (.2)
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Multiple-processor scheduling
Scheduling more complex w/ multiple CPUs
(assuming homogeneous processors)
Asymmetric/symmetric (SMP) multiprocessing
– Supported by most OSs (common or independent ready 

queues)
Processor affinity – benefits of past history in a 
processor
Load balancing – keep workload evenly distributed
– Push migration – specific task periodically checks load in 

processors & pushes processes for balance
– Pull migration – idle processor pulls processes from busy one 

Symmetric multithreading (hyperthreading or SMT)
– Multiple logical processors on a physical one
– Each w/ own architecture state, supported by hardware
– Shouldn’t require OS to know about it (but could benefit from)
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Scheduling the server-side of P2P systems
The response time experienced by users of P2P data sharing 
services is dominated by the downloading process. 

– >80% of all download requests in Kazaa are rejected due to capacity 
saturation at server peers

– >50% of all requests for large objects (>100MB) take more than one day & 
~20% take over one week to complete

Most implementations 
use FCFS or PS
Apply SRPT! Work by 
Qiao et al. @ Nortwestern

23

PS – Process Sharing
FCFS – First-Come First-Serve
SRPT – Shortest-Remaining Processing-Time

Mean response time of 
object download as a 
function of system load.
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Thread scheduling

Now add threads – user or kernel level?
User-level (process-contention scope)
– Context switch is cheaper
– You can have an application-specific scheduler at user level
– Kernel doesn’t know of your threads

Kernel-level (system-contention scope)
– Any scheduling of threads is possible (since the kernel knows 

of all)
– Switching threads inside same process is cheaper than 

switching processes
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Pthread scheduling API
#include <pthread.h>
#include <stdio.h>
#define NUM THREADS 5

/* Each thread begin control in this function */
void *runner(void *param)
{ 

printf("I am a thread\n");
pthread exit(0);

}

int main(int argc, char *argv[])
{

int i;
pthread_t tid[NUM THREADS]; pthread_attr_t attr;

pthread_attr_init(&attr); /* get the default attributes */
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM); /* set the sched algo */
pthread_attr_setschedpolicy(&attr, SCHED_OTHER); /* set the sched policy */

for (i = 0; i < NUM_THREADS; i++) /* create the threads */
pthread_create(&tid[i],&attr,runner,NULL);

for (i = 0; i < NUM_THREADS; i++) /* now join on each thread */
pthread_join(tid[i], NULL);

}
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Policy vs. mechanism

Separate what is done from how it is done
– Think of parent process with multiple children
– Parent process may knows relative importance of children (if, 

for example, each one has a different task)

None of the algorithms presented take the parent 
process input for scheduling
Scheduling algorithm parameterized
– Mechanism in the kernel

Parameters filled in by user processes
– Policy set by user process
– Parent controls scheduling w/o doing it
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Algorithm evaluation

First problem: criteria to be used in selection
– E.g. Maximize CPU utilization, but w/ max. response time of 1 

sec.
Evaluation forms
– Analytic evaluation - deterministic modeling: 

• Given workload & algorithm → number or formula
• Simple & fast, but workload specific

– Queueing models
• Computer system described as a network of servers
• Load characterized by distributions
• Applicable to limited number of algorithms – complicated maths

& questionable assumptions
– Simulations

• Distribution-driven or trace-based
– Implementation

• Highly accurate & equally expensive
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Next time

Process synchronization
– Race condition & critical regions
– Software and hardware solutions
– Review of classical synchronization problems
– …

What really happened in Mars?
http://research.microsoft.com/~mbj/Mars_Pathfinder/Mars_Pathfinder.html
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OS examples – Linux
Preemptive, priority-based scheduling
– Two separate priority ranges (real-time [0,99] & nice 

[100,140]) mapping to a global priority scheme
Two algorithms: time-sharing and real-time
Time-sharing
– Prioritized credit-based – process w/ most credits is 

scheduled next
– Credit subtracted when timer interrupt occurs
– When credit = 0, another process chosen
– When all processes have credit = 0, re-crediting occurs

• Based on factors including priority and history
(Soft) Real-time 
– Static priority for RT tasks
– Two classes

• FCFS (2+ task w/ = priority RR) and RR (FCFS w/ quantum)
• Highest priority process always runs first
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OS examples – Linux (Ingo Molnar’s O(1))
Perfect SMP scalability & improved SMP affinity
O(1) scheduling – constant-time, regardless of # of running 
processes 
– One runqueue per processor
– Two priority arrays per

• Active – tasks w/ remaining quantum
• Expired – tasks w/ …

– Each priority array includes 1 queue of runnable processes per 
priority level

– Recalculation of task’s dynamic priority done when task has 
exhausted its time quantum & moved to expired

– When active is empty – swap
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