
Today
• OS services
• OS interface to programmers/users
• OS components & interconnects
• Structuring Oss

Next time
• Processes

OS Concepts and structure

Fabián E. Bustamante, Fall 2006

OS Services

OS provides a number of services
– To users directly through a command interpreter/shell or GUI
– To application programs through system calls

Some services are for convenience
– Program execution
– I/O operation
– File system management
– Communication

Some to ensure efficient operation
– Resource allocation
– Accounting
– Protection and security

EECS 343 Operating Systems
Northwestern University

Command interpreter (shell) & GUI

Command interpreter
– Handle (interpret and execute) user commands
– Could be part of the OS

• MS DOS, Apple II
– Could be just a special program

• UNIX, Windows XP
• In this way, multiple options – shells – are possible

– The command interpreter could
• Implement all commands
• Simply understand what program to invoke and how (UNIX)

GUI
– Friendlier, through a desktop metaphor, if sometimes limiting
– Xerox PARK Alto >> Apple >> Windows >> Linux

EECS 343 Operating Systems
Northwestern University

4

Shell – stripped down

while (TRUE) { /* repeat forever */
type_prompt(); /* display prompt */
read_command(command, parameters) /* input from terminal */

if (fork() != 0) { /* fork off child process */
/* Parent code */
waitpid(-1, &status, 0); /* wait for child to exit */

} else {
/* Child code */
execve (command, parameters, 0); /* execute command */

}
}

EECS 343 Operating Systems
Northwestern University

System calls

Low-level interface to services for application
programs
Higher-level requests get translated into sequence of
system calls
Writing cp – copy source to destination
– Get file names
– Open source
– Create destination
– Loop

• Read from source
• Copy to destination

– Close destination
– Report completion
– Terminate

Making the system call: read(fd, buffer, nbytes)
EECS 343 Operating Systems

Northwestern University

Before calling the syscall,
push parameters onto the stack

Then call the library procedure,
which places the syscall number
in a register, an executes a TRAP

Kernel runs the right
sys call handler

Before returning to
the user program as
a procedure call

A program in execution
– Address space
– Set of registers

To get a better sense of it
– What data do you need to (re-) start a suspended process?
– Where do you keep this data?
– What is the process abstraction I/F offered by the OS

• Create, delete, suspend, resume & clone a process
• Inter-process communication & synchronization
• Create/delete a child process

6

Processes

Call Description

pid = fork() Create a child process identical to the parent

pid = waitpid(pid, &statloc, options) Wait for a child to terminate

s = execve(name, argv, environp) Replace a process’ core image

exit(status) Terminate process execution & return status

EECS 343 Operating Systems
Northwestern University

7

Memory management

Main memory – the directly accessed storage for CPU
– Programs must be stored in memory to execute
– Memory access is fast (e.g., 60 ns to load/store)

• but memory doesn’t survive power failures

OS must:
– Allocate memory space for programs (explicitly and implicitly)
– Deallocate space when needed by rest of system
– Maintain mappings from physical to virtual memory

• e.g. through page tables
– Decide how much memory to allocate to each process
– Decide when to remove a process from memory

Call Description

void *sbrk(intptr_t increment) Increments program data space by ‘increment’ bytes

EECS 343 Operating Systems
Northwestern University

8

Deadlocks

Processes interactions & deadlock opportunities
A real-world example

A simple OS example
– Two processes making

a CD from tape

P1 P2

CD recorder

Tape drive

Request Tape drive
Tape drive assigned

Request CD recorder

… wait for P1 …

Request CD recorder
CD recorder assigned

Request Tape drive

… wait for P2 …

EECS 343 Operating Systems
Northwestern University

9

I/O

A big chunk of the OS kernel deals with I/O
– Hundreds of thousands of lines in NT

The OS provides a standard interface between
programs (user or system) and devices
– file system (disk), sockets (network), frame buffer (video)

Device drivers are the routines that interact with
specific device types
– Encapsulates device-specific knowledge

• e.g., how to initialize a device, how to request I/O, how to handle
interrupts or errors

– Examples: SCSI device drivers, Ethernet card drivers, video
card drivers, sound card drivers, …

EECS 343 Operating Systems
Northwestern University

10

Secondary storage

Secondary storage (disk, tape) is persistent memory
– Often magnetic media, survives power failures (hopefully)

Routines that interact with disks are typically at a very
low level in the OS
– Used by many components (file system, VM, …)
– Handle scheduling of disk operations, head movement, error

handling, and often management of space on disks

Usually independent of file system
– Although there may be cooperation
– File system knowledge of device details can help optimize

performance
• e.g., place related files close together on disk

EECS 343 Operating Systems
Northwestern University

11

File systems

Secondary storage devices are hard to work with
File system offers a convenient abstraction
– Defines logical abstractions/objects like files & directories
– As well as operations on these objects

A file is the basic unit of long-term storage
– File: named collection of persistent information

A directory is just a special kind of file
– Directory: file containing names of other files & metadata

Interface:
– File/directory creation/deletion, manipulation, copy, lock

Other higher level services: accounting & quotas,
backup, indexing or search, versioning

EECS 343 Operating Systems
Northwestern University

12

System calls

Call Description

fd = open(file, how, …) Open a file for reading, writing or both.

s = close(fd) Close an open file

n = read(fd, buffer, nbytes) Read data from a file into a buffer

n = write(fd, buffer, nbytes) Write data from a buffer into a file

pos = lseek(fd, offest, whence) Move the file pointer

s = stat(name,&buf) Get a file’s status info

File management

Call Description

s = mkdir(name, mode) Create a new directory

s = rmdir(name) Remove an empty directory

s = link(name1, name2) Create a new entry, name2, pointing to name1

s = unlink(name) Remove a directory entry

s = mount(special, name, flag) Mount a file system

s = unmount(special) Unmount a file system

Directory & file system management

EECS 343 Operating Systems
Northwestern University

13

Protection

Protection is a general mechanism used
throughout the OS
– All resources needed to be protected

• memory
• processes
• files
• devices
• …

– Protection mechanisms help to detect and contain
errors, as well as preventing malicious destruction

EECS 343 Operating Systems
Northwestern University

14

OS design & implementation

A design task – start from goals & specification
Affected by choice of hardware, type of system
User goals and System goals
– User – convenient to use, easy to learn, reliable, safe, fast
– System – easy to design, implement, & maintain, also flexible,

reliable, error-free & efficient
Clearly conflicting goals, no unique solution
Some other issues complicating this
– Size: Windows XP ~40G SLOC, RH 7.1 17G SLOC
– Concurrency – multiple users and multiple devices all active

at once
– Potentially hostile users, but some users want to collaborate
– Long expected lives & no clear ideas on how the system will

be used
– Portability and support to thousands of device drivers
– Backward compatibility

EECS 343 Operating Systems
Northwestern University

15

OS design & implementation
A software engineering principle – separate policy &
mechanism
– Policy: What will be done?
– Mechanism: How to do it?
– Why do you care? Maximum flexibility, easier to change

policies
Implementation on high-level language
– Early on – assembly (e.g. MS-DOS – 8088), later Algol

(MCP), PL/1 (MULTICS), C (Unix, …)
– Advantages – faster to write, more compact, easier to

maintain & debug, easier to port
– Cost – Slower, but who cares?!

EECS 343 Operating Systems
Northwestern University

16

OS structure

OS made of number of components
– Process management, memory management, file system, …
– and System programs (privileged and non-privileged)

• e.g., bootstrap code, the init program, …

Major design issue
– How do we organize all this?
– What are all of the code modules, and where do they exist?
– How do they interact?

Massive software engineering and design problem
– design a large, complex program that:

• performs well, is reliable, is extensible, is backwards compatible,
…

EECS 343 Operating Systems
Northwestern University

17

Monolithic design
Major advantage:
– Cost of module

interactions is low
(procedure call)

Disadvantages:
– Hard to understand
– Hard to modify
– Unreliable (no isolation between system modules)
– Hard to maintain

What is the alternative?
– Find a way to organize the OS in order to simplify its design

and implementation

EECS 343 Operating Systems
Northwestern University

18

Layering

The traditional approach is layering
– Implement OS as a set of layers
– Each layer presents an enhanced ‘virtual machine’ to the layer

above
Each layer can be tested and verified independently
(Dijkstra’s THE system)

Layer Description
5: Job managers Execute users’ programs

4: Device managers Handle device & provide buffering

3: Console manager Implements virtual consoles

2: Page manager Implements virtual memory for each process

1: Kernel Implements a virtual processor for each process

0: Hardware

EECS 343 Operating Systems
Northwestern University

19

Problems with layering

Imposes hierarchical structure
– but real systems are more complex:

• File system requires VM services (buffers)
• VM would like to use files for its backing store

– Strict layering isn’t flexible enough
Poor performance
– Each layer crossing implies overhead

Disjunction between model and reality
– Systems modeled as layers, but not really built that

way

EECS 343 Operating Systems
Northwestern University

Virtual machines

Initial release of OS/360 were strictly batch but users
wanted timesharing
– IBM CP/CMS, later renamed VM/370 (‘79)

Observation – Timesharing system provides
(1) multiprogramming & (2) extended (virtual) machine
Essence of VM/370 – separate the two
– Heart of the system (VMM) does multiprogramming &

provides to next layer up multiple exact copies of bare HW
– Each VM can run any OS

More recently – Java VM, VMWare

EECS 343 Operating Systems
Northwestern University

20

370 Bare hardware

VM/370

CMS CMS CMSI/O instruction here

Trap here

System call here

Trap here

21

Microkernels

Popular in the late 80’s, early 90’s
– Recent resurgence

Goal:
– Minimize what goes

in kernel
– Organize rest of OS as user-level processes

This results in:
– Better reliability (isolation between components)
– Ease of extension and customization
– Poor performance (user/kernel boundary crossings)

First microkernel system was Hydra (CMU, 1970)
– Follow-ons: Mach (CMU), Chorus (French UNIX-like OS), OS

X (Apple), in some ways NT (Microsoft)

EECS 343 Operating Systems
Northwestern University

22

Operating system generation

OS design for a class of machines; need to configure it
for yours - SYSGEN
SYSGEN program gets info on specific configuration
– CPU, memory, devices, other parameters

Once you got it you could
– Modify source code & recompile kernel
– Modify tables and select precompiled modules
– Modify tables; everything is there & selection is at run time
Trading size & generality for ease of modification

EECS 343 Operating Systems
Northwestern University

23

System boot

How does the OS gets started?
Booting: starting a computer by loading the kernel
Instruction register loaded with predefined memory
location – bootstrap loader (ROM)
– Why not just put the OS in ROM? Cell phones & PDAs

Bootstrap loader
– Run diagnostics
– Initialize registers & controllers
– Fetch second bootstrap program form disk

• Why do you need a second bootstrap loader?

Second bootstrap program loads OS & gets it going
– A disk with a boot partition – boot/system disk

EECS 343 Operating Systems
Northwestern University

24

Summary & preview

Today
– The mess under the carpet
– Basic concepts in OS
– Structuring OS - a few alternatives

Next …
– Process – the central concept in OS

• Process model and implementation

– Threads – a light-weight process
• Thread model, usage & implementation

EECS 343 Operating Systems
Northwestern University

	OS Concepts and structure
	OS Services
	Command interpreter (shell) & GUI
	Shell – stripped down
	System calls
	Processes
	Memory management
	Deadlocks
	I/O
	Secondary storage
	File systems
	System calls
	Protection
	Slide Number 14
	OS design & implementation
	Slide Number 16
	Monolithic design
	Slide Number 18
	Problems with layering
	Virtual machines
	Slide Number 21
	Operating system generation
	Slide Number 23
	Summary & preview

