
Today

Working with Unix files

Standard I/O

Conclusions

System-Level I/O

Fabián E. Bustamante, Spring 2010

A typical hardware system

2

main

memory
I/O

bridge
bus interface

ALU

register file

CPU chip

system bus memory bus

disk

controller

graphics

adapter

USB

controller

mouse keyboard monitor

disk

I/O bus
Expansion slots for

other devices such

as network adapters.

Reading a disk sector: Step 1

3

main

memory

ALU

register file

CPU chip

disk

controller

graphics

adapter

USB

controller

mouse keyboard monitor

disk

I/O bus

bus interface

CPU initiates a disk read by writing a

command, logical block number, and

destination memory address to a port

(address) associated with disk controller.

Reading a disk sector: Step 2

4

main

memory

ALU

register file

CPU chip

disk

controller

graphics

adapter

USB

controller

mouse keyboard monitor

disk

I/O bus

bus interface

Disk controller reads the sector and performs

a direct memory access (DMA) transfer into

main memory.

Reading a disk sector: Step 3

5

main

memory

ALU

register file

CPU chip

disk

controller

graphics

adapter

USB

controller

mouse keyboard monitor

disk

I/O bus

bus interface

When the DMA transfer completes, the disk

controller notifies the CPU with an interrupt

(i.e., asserts a special “interrupt” pin on the

CPU)

Unix files

A Unix file is a sequence of m bytes:

– B0, B1, , Bk , , Bm-1

All I/O devices are represented as files:

– /dev/sda2 (/usr disk partition)

– /dev/tty2 (terminal)

Even the kernel is represented as a file:

– /dev/kmem (kernel memory image)

– /proc (kernel data structures)

6

Unix I/O

Key features

– Elegant mapping of files to devices allows kernel to export

simple interface

– Key Unix idea: All input and output is handled in a consistent

and uniform way

Why do we care?

– Understanding I/O helps you understand other system

concepts

– Sometimes you have no chance but to use Unix I/O functions

Basic Unix I/O operations (system calls):

– Opening and closing files: open()and close()

– Changing the current file position (seek): lseek (not discussed)

– Reading and writing a file: read() and write()

7

Opening files

Opening a file informs the kernel that you are getting

ready to access that file

Returns a small identifying integer file descriptor

– fd == -1 indicates that an error occurred

Other flags: O_WRONLY, O_RDWR

Each process created by a Unix shell begins life with

three open files associated with a terminal:

– 0: standard input; 1: standard output; 2: standard error

8

int fd; /* file descriptor */

if ((fd = open(“/etc/hosts”, O_RDONLY)) < 0) {

perror(“open”);

exit(1);

}

Closing files

Closing a file informs the kernel that you are finished

accessing that file.

Closing an already closed file is a recipe for disaster in

threaded programs (more on this later)

Moral: Always check return codes, even for seemingly
benign functions such as close()

9

int fd; /* file descriptor */

int retval; /* return value */

if ((retval = close(fd)) < 0) {

perror(“close”);

exit(1);

}

Reading files

Reading a file copies bytes from the current file
position to memory, and then updates file position.

Returns number of bytes read from file fd into buf
– Return type ssize_t is signed integer

– nbytes == -1 indicates that an error occurred.

– Short counts (nbytes < sizeof(buf)) are possible and
are not errors!

10

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror(“read”);

exit(1);

}

Writing files

Writing a file copies bytes from memory to the current

file position, and then updates current file position.

Returns number of bytes written from buf to file fd.

– nbytes == -1 indicates that an error occurred

– As with reads, short counts are possible and are not errors!

11

char buf[512];

int fd; /* file descriptor */

int nbytes; /* number of bytes read */

/* Open the file fd ... */

/* Then write up to 512 bytes from buf to file fd */

if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {

perror(“write”);

exit(1);

}

Unix I/O example

Copying standard input to standard output one byte at

a time.

12

#include <stdlib.h>

#include <unistd.h>

int main(void)

{

char c;

while((len = read(0 /* stdin */, &c, 1)) == 1) {

if (write(1 /* stdout */, &c, 1) != 1)

exit(20);

if (len == -1) {

perror(“read from stdin failed”);

exit(10);

}

}

exit(0);

}

Dealing with short counts

Short counts can occur in these situations:

– Encountering (end-of-file) EOF on reads

– Reading text lines from a terminal

– Reading and writing network sockets or Unix pipes

Short counts never occur in these situations:

– Reading from disk files (except for EOF)

– Writing to disk files

13

File metadata

Metadata is data about data, in this case file data.

Maintained by kernel, accessed by users with the
stat and fstat functions.

14

/* Metadata returned by the stat and fstat functions */

struct stat {

dev_t st_dev; /* device */

ino_t st_ino; /* inode */

mode_t st_mode; /* protection and file type */

nlink_t st_nlink; /* number of hard links */

uid_t st_uid; /* user ID of owner */

gid_t st_gid; /* group ID of owner */

dev_t st_rdev; /* device type (if inode device) */

off_t st_size; /* total size, in bytes */

unsigned long st_blksize; /* blocksize for filesystem I/O */

unsigned long st_blocks; /* number of blocks allocated */

time_t st_atime; /* time of last access */

time_t st_mtime; /* time of last modification */

time_t st_ctime; /* time of last change */

};

Example of accessing file metadata

15

/* statcheck.c - Querying and manipulating a file’s meta data */

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

int main (int argc, char **argv)

{

struct stat Stat;

char *type, *readok;

stat(argv[1], &Stat);

if (S_ISREG(Stat.st_mode)) /* file type*/

type = "regular";

else if (S_ISDIR(Stat.st_mode))

type = "directory";

else

type = "other";

if ((Stat.st_mode & S_IRUSR)) /* OK to read?*/

readok = "yes";

else

readok = "no";

printf("type: %s, read: %s\n", type, readok);

exit(0);

}

bass> ./statcheck statcheck.c

type: regular, read: yes

bass> chmod 000 statcheck.c

bass> ./statcheck statcheck.c

type: regular, read: no

How the kernel represents open files

Two descriptors referencing two distinct open disk

files. Descriptor 1 (stdout) points to terminal, and

descriptor 4 points to open disk file.

16

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table

[one table per process]

Open file table

[shared by all processes]

v-node table

[shared by all processes]

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Info in
stat

struct

17

File sharing

Two distinct descriptors sharing the same disk file
through two distinct open file table entries
– E.g., Calling open twice with the same filename argument

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table

(one table

per process)

Open file table

(shared by

all processes)

v-node table

(shared by

all processes)

File pos

refcnt=1
...

File pos

refcnt=1

...

File access

...

File size

File type

File A

File B

How processes share files

A child process inherits its parent‟s open files
– Here is the situation immediately after a fork

18

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor

tables

Open file table

(shared by

all processes)

v-node table

(shared by

all processes)

File pos

refcnt=2

...

File pos

refcnt=2

...

Parent's table

fd 0

fd 1

fd 2

fd 3

fd 4

Child's table

File access

...

File size

File type

File access

...

File size

File type

File A

File B

I/O Redirection

Question: How does a shell implement I/O redirection?
unix> ls > foo.txt

Answer: By calling the dup2(oldfd, newfd)

function

– Copies (per-process) descriptor table entry oldfd to entry

newfd

19

a

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
after dup2(4,1)

I/O Redirection example

Before calling dup2(4,1), stdout (descriptor 1) points
to a terminal and descriptor 4 points to an open disk
file.

20

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table

(one table

per process)

Open file table

(shared by

all processes)

v-node table

(shared by

all processes)

File pos

refcnt=1

...

File pos

refcnt=1

...

stderr

stdout

stdin File access

...

File size

File type

File access

...

File size

File type

File A

File B

I/O Redirection example (cont)

After calling dup2(4,1), stdout is now redirected to

the disk file pointed at by descriptor 4.

21

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table

(one table

per process)

Open file table

(shared by

all processes)

v-node table

(shared by

all processes)

File pos

refcnt=0

...

File pos

refcnt=2

...

File access

...

File size

File type

File access

...

File size

File type

File A

File B

Standard I/O functions

The C standard library (libc.a) contains a collection

of higher-level standard I/O functions

– Documented in Appendix B of K&R.

Examples of standard I/O functions:

– Opening and closing files (fopen and fclose)

– Reading and writing bytes (fread and fwrite)

– Reading and writing text lines (fgets and fputs)

– Formatted reading and writing (fscanf and fprintf)

22

Standard I/O streams

Standard I/O models open files as streams

– Abstraction for a file descriptor and a buffer in memory.

C programs begin life with three open streams
(defined in stdio.h)

– stdin (standard input)

– stdout (standard output)

– stderr (standard error)

23

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */

extern FILE *stdout; /* standard output (descriptor 1) */

extern FILE *stderr; /* standard error (descriptor 2) */

int main() {

fprintf(stdout, “Hello, world\n”);

}

Standard I/O buffering in action

You can see this buffering in action, using strace

24

#include <stdio.h>

int main()

{

printf(“h”);

printf(“e”);

printf(“l”);

printf(“l”);

printf(“o”);

printf(“\n”);

fflush(stdout);

exit(0);

}
linux> strace ./bufStdio

execve("./bufStdio", ["./bufStdio"], [/* 24 vars */]) = 0

...

write(1, "hello\n", 6hello ...) = 6

exit_group(0) = ?

25

Fork example #2 (earlier lecture)

Both parent and child can continue forking

Removed the “\n” from the first printf

– “L0” gets printed twice; fork duplicated stream buffer

void fork2()

{

printf("L0\n");

fork();

printf("L1\n");

fork();

printf("Bye\n");

}

L0 L1

L1

Bye

Bye

Bye

Bye

void fork2()

{

printf("L0");

fork();

printf("L1\n");

fork();

printf("Bye\n");

}

L0L1

L0L1

Bye

Bye

Bye

Bye

Having fun with file descriptors

26

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

int main(int argc, char *argv[])

{

int fd1, fd2, fd3;

char c1, c2, c3;

char *fname=argv[1];

fd1 = open(fname, O_RDONLY, 0);

fd2 = open(fname, O_RDONLY, 0);

fd3 = open(fname, O_RDONLY, 0);

dup2(fd2, fd3);

read(fd1, &c1, 1);

read(fd2, &c2, 1);

read(fd3, &c3, 1);

printf("c1 = %c, c2 = %c, c3 = %c\n",

c1, c2, c3);

exit(0);

}

What would this program print given a file containing „abcde‟?

What would this program print given a file containing „abcde‟?

Having fun with file descriptors

27

#include <sys/types.h>

...

int main(int argc, char *argv[])

{

int fd1;

int s = getpid() & 0x1;

char c1, c2;

char *fname=argv[1];

fd1 = open(fname, O_RDONLY, 0);

read(fd1, &c1, 1);

if (fork()) { /* parent */

sleep(s);

read(fd1, &c2, 1);

printf("Parent: c1 = %c, c2 = %c\n", c1, c2);

} else {

sleep(1-s);

read(fd1, &c2, 1);

printf("Child: c1 = %c, c2 = %c\n", c1, c2);

}

exit(0);

}

What would be the content of the resulting file?

Having fun with file descriptors

28

#include <sys/types.h>

...

int main(int argc, char *argv[])

{

int fd1, fd2, fd3;

char *fname=argv[1];

fd1 = open(fname, O_CREAT| O_TRUNC | O_RDWR, S_IRUSR | S_IWUSR);

write(fd1, "pqrs", 4);

fd3 = open(fname, O_APPEND | O_WRONLY, 0);

write(fd1, "jklmn", 5);

fd2 = dup(fd1);

write(fd2, "wxyz", 4);

write(fd3, "ef", 2);

exit(0);

}

Pros/cons of Unix I/O

Pros

– Unix I/O is the most general and lowest overhead form of I/O

• All other I/O packages are implemented using Unix I/O functions

– Unix I/O provides functions for accessing file metadata

Cons

– Dealing with short counts is tricky and error prone

– Efficient reading of text lines requires some form of buffering,

also tricky and error prone

– Both of these issues are addressed by the standard I/O

29

Pros/cons of Standard I/O

Pros:

– Buffering increases efficiency by decreasing the number of
read and write system calls

– Short counts are handled automatically

Cons:

– Provides no function for accessing file metadata

– Standard I/O is not appropriate for input and output on

network sockets

– There are poorly documented restrictions on streams that

interact badly with restrictions on sockets

30

Choosing I/O Functions

General rule: Use the highest-level I/O functions you

can.

– Many C programmers are able to do all of their work using the

standard I/O functions.

When to use standard I/O?

– When working with disk or terminal files.

When to use raw Unix I/O

– When you need to fetch file metadata.

31

Choosing I/O Functions

General rule: Use the highest-level I/O functions you

can.

– Many C programmers are able to do all of their work using the

standard I/O functions.

When to use standard I/O?

– When working with disk or terminal files.

When to use raw Unix I/O

– When you need to fetch file metadata.

32

Summary

System level I/O from the programmer perspective

– For the underlying details – EECS 343

Next time

– There is no next time 

33

