System-Level I/O

Today

» Working with Unix files
« Standard 1/O

» Conclusions

Fabian E. Bustamante, Spring 2010

A typical hardware system

CPU chip

register file

1r

;1 ALU

bus interface

system bus

memory bus

o
e

l

main
memory

ﬁ

USB
controller

T

mouse keyboard

{} /0 bus {}

graphics
adapter

l

monitor

disk
controller

A

A 4

HHAF>

Expansion slots for
other devices such
as network adapters.

Reading a disk sector: Step 1

chtlehip CPU initiates a disk read by writing a
register file command, logical block number, and
|::> destination memory address to a port

<::| ALU (address) associated with disk controller.

_ main
bus interface <:> memory

< /O bus >
A

USB graphics disk
controller adapter controller

T l]

A 4

mouse keyboard monitor

Reading a disk sector: Step 2

CPU chip

_ _ Disk controller reads the sector and performs
register file a direct memory access (DMA) transfer into

|) main memory.
ALU

bus interface <::::>

Sl

USB graphics
controller adapter

T l

mouse keyboard monitor

main
memory

I/O bus >

Reading a disk sector: Step 3

CPU chip

register file

1r

—\

=

ALU

bus interface

S

When the DMA transfer completes, the disk
controller notifies the CPU with an interrupt
(i.e., asserts a special “interrupt” pin on the
CPU)

main
memory

<

<

USB
controller

T

<

graphics
adapter

mouse keyboard

l

monitor

I/O bus >

disk
controller

Unix files

* A Unix file is a sequence of m bytes:
- B;, By, ..., By oo, By

» All I/O devices are represented as files:
— /dev/sda2 (/usr disk partition)
- /dev/tty2 (terminal)

» Even the kernel is represented as a file:
— /dev/kmem (kernel memory image)
— /proc (kernel data structures)

Unix I/O

» Key features

— Elegant mapping of files to devices allows kernel to export
simple interface

— Key Unix idea: All input and output is handled in a consistent
and uniform way
* Why do we care?

— Understanding I/O helps you understand other system
concepts

— Sometimes you have no chance but to use Unix I/O functions

» Basic Unix I/O operations (system calls):
— Opening and closing files: open ()and close ()
— Changing the current file position (seek): 1seek (not discussed)
— Reading and writing a file: read () and write ()

Opening files

* Opening a file informs the kernel that you are getting
ready to access that file

int £d; /* file descriptor */

if ((fd = open(“/etc/hosts”, O RDONLY)) < 0) {
perror (“open”) ;
exit(1l);

}

» Returns a small identifying integer file descriptor
— fd == -1 indicates that an error occurred

¢ Other flags: © WRONLY, O RDWR
» Each process created by a Unix shell begins life with

three open files associated with a terminal.
— 0: standard input; 1: standard output; 2: standard error

Closing files

» Closing a file informs the kernel that you are finished
accessing that file.

int £d; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror (“‘close”) ;
exit(l);

}

» Closing an already closed file is a recipe for disaster in
threaded programs (more on this later)

» Moral: Always check return codes, even for seemingly
benign functions such as close ()

Reading files

» Reading a file copies bytes from the current file
position to memory, and then updates file position.

char buf[512];

int £4; /* file descriptor */
int nbytes; /* number of bytes read */
/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
perror (“read”) ;
exit (1) ;

}

* Returns number of bytes read from file £d into buf
— Returntype ssize t is signed integer
- nbytes == -1 indicates that an error occurred.

— Short counts (nbytes < sizeof (buf)) are possible and
are not errors!

Writing files

» Writing a file copies bytes from memory to the current
file position, and then updates current file position.

char buf[512];
int £d; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
perror (“‘write”) ;
exit(1l) ;
}

» Returns number of bytes written from buf to file £d.
- nbytes == -1 indicates that an error occurred
— As with reads, short counts are possible and are not errors!

Unix I/O example

» Copying standard input to standard output one byte at
a time.

#include <stdlib.h>
#include <unistd.h>

int main (void)

{

char c;
while((len = read(0 /* stdin */, &c, 1)) == 1) {
if (write(l /* stdout */, &c, 1) !'= 1)
exit (20);
if (len == -1) {
perror (“‘read from stdin failed”);
exit(10);

}

}
exit(0) ;

Dealing with short counts

» Short counts can occur in these situations:
— Encountering (end-of-file) EOF on reads
— Reading text lines from a terminal
— Reading and writing network sockets or Unix pipes

» Short counts never occur in these situations:
— Reading from disk files (except for EOF)
— Writing to disk files

File metadata

Metadata is data about data, in this case file data.

Maintained by kernel, accessed by users with the
stat and fstat functions.

/* Metadata returned by the stat and fstat functions */

struct stat {

dev_t
ino_t
mode_t
nlink t
uid t
gid_t
dev_t
off t

unsigned long
unsigned long

time_t
time_t
time_t

st _dev;
st_ino;
st_mode;
st _nlink;
st_uid;
st_gid;
st_rdev;
st_size;
st _blksize;
st_blocks;
st_atime;
st mtime;
st _ctime;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

device */

inode */

protection and file type */
number of hard links */

user ID of owner */

group ID of owner */

device type (if inode device) */
total size, in bytes */
blocksize for filesystem I/O */
number of blocks allocated */
time of last access */

time of last modification */
time of last change */

Example of accessing file metadata

/* statcheck.c - Querying and manipulating a file’s meta data */
#include <stdio.h>

ﬁiﬁzizg: ::;tsi}t;p]::h> bass> ./statcheck statcheck.c
#include <sys/stat.h> type: regular, read: yes
#include <unistd.h> bass> chmod 000 statcheck.c

bass> ./statcheck statcheck.c
int main (int argc, char **argv) type: regular, read: no

{
struct stat Stat;

char *type, *readok;

stat (argv[1l], &Stat);

if (S_ISREG(Stat.st mode)) /* file type*/
type = "regular";

else if (S_ISDIR(Stat.st mode))
type = "directory";

else
type = "other";

if ((Sstat.st mode & S IRUSR)) /* OK to read?*/
readok = "yes";

else
readok = "no";

printf ("type: %s, read: %s\n", type, readok);
exit(0) ;

How the kernel represents open files

» Two descriptors referencing two distinct open disk
files. Descriptor 1 (stdout) points to terminal, and
descriptor 4 points to open disk file.

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]
File A (terminal)
stdin fdO = File accesy |
stdout fd 1 = : o o Info in
File size
stderr fd2 File pos - » stat
fd 3 refcnt=1 File type struct
fd 4 ~ : : }
_— File access
File pos F_|Ie size
refcnt=1 File type

File sharing

» Two distinct descriptors sharing the same disk file
through two distinct open file table entries

— E.g., Calling open twice with the same filename argument

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
~ File A _
_/V =
fd 0 — B File access
]:g ; File pos File size
fd 3 refcnt=1 File type
fd 4 ~ : g
File pos

refcnt=1

How processes share files

» A child process inherits its parent’s open files
— Here is the situation immediately after a fork

Descriptor Open file table v-node table
tables (shared by (shared by
all processes) all processes)
Parent's table ~ FileA .
fd 0 / —J—" File access
:g ; - File pos File size
fd 3 refcnt=2 File type
fd 4 ~ : :
Child's table File B e

fd0] " File access
]1:3 ; 4 File pos :-lle size
fd 3 refcnt=2 'Ie. type
fd 4

I/O Redirection

* Question: How does a shell implement I/O redirection?
unix> 1ls > foo.txt
* Answer: By calling the dup2 (ol1dfd, newfd)

function
— Copies (per-process) descriptor table entry o1dfd to entry

newfd
Descriptor table Descriptor table

before dup2 (4,1) after dup2 (4,1)

fd O fd O

fd 1 a fd 1 b

fd 2 ::>> fd 2

fd 3 fd 3

fd 4 b fd 4 b

I/O Redirection example

» Before calling dup?2 (4, 1), stdout (descriptor 1) points
to a terminal and descriptor 4 points to an open disk

file.
Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
___ File A
. _/’ -
stdin fd O = File access
stdout fd 1 ==) ; -
Fil
stderr fd 2 Flle jpros [e 5128
fd 3 refcnt=1 File type
File B :
_—— File access
File pos F_|Ie size
refent=1 File type

I/O Redirection example (cont)

» After calling dup2 (4, 1), stdout is now redirected to
the disk file pointed at by descriptor 4.

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
___FleA__. . o
fd 0 -t File access
fa1 [“File pos | File size |
fd 2 P ! :"I;I ------ !
fd3 refont=0 | L CTe e |
fd 4 ~J E ' :_____E ______ i
\ File B / -
File access
File pos F-lle size
refcnt=2 File type

Standard I/O functions

» The C standard library (1ibc.a) contains a collection
of higher-level standard I/O functions
— Documented in Appendix B of K&R.

» Examples of standard I/O functions:
— Opening and closing files (fopen and fclose)
— Reading and writing bytes (fread and fwrite)
— Reading and writing text lines (fgets and fputs)
— Formatted reading and writing (fscanf and fprintf)

Standard I/O streams

» Standard I/O models open files as streams
— Abstraction for a file descriptor and a buffer in memory.
» C programs begin life with three open streams
(defined in stdio.h)
- stdin (standard input)
— stdout (standard output)
- stderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main() {
fprintf (stdout, “Hello, world\n”);

}

Standard I/O buffering in action

* You can see this buffering in action, using strace

#include <stdio.h>

int main ()

{
printf (“h”) ;
printf (“Ye”) ;
printf (“1”) ;
printf (“1”) ;
printf (“Yo”) ;
printf (“\n”) ;
fflush (stdout) ;
exit (0) ;

linux> strace ./bufStdio

execve ("./bufStdio", ["./bufStdio"], [/* 24 vars */]) = 0

write (1, "hello\n", 6hello ...) = 6
exit group (0) = ?

Fork example #2 (earlier lecture)

» Both parent and child can continue forking

void fork2 ()
{

\ Bye
printf ("LO\n") ; £
fork () ; | Bye
printf ("L1\n"); Bye
fork () ; 1.0 |11 | Bye
printf ("Bye\n") ;

}

*» Removed the “\n” from the first printf

— “L0O” gets printed twice; fork duplicated stream buffer
void fork2 ()

{ Bye
printf ("LO") ;) LOL1l | Bye
fork () ; Bye
printf ("L1\n") ; £
fork() ; LOL1 | Bye

printf ("Bye\n") ;

Having fun with file descriptors

» What would this program print given a file containing ‘abcde’?

#include
#include
#include
#include
#include
#include

int main

{

<sys/types.h>
<sys/stat.h>
<fcntl.h>
<stdio.h>
<unistd.h>
<stdlib.h>

(int argc,

exit (0) ;

char *argvl|[])

int fdl, fd2, £d3;

char cl, c2, c3;

char *fname=argv[1l];

fdl = open(fname, O RDONLY, 0);

fd2 = open(fname, O RDONLY, O0);

fd3 = open(fname, O RDONLY, O0);

dup2 (fd2, £fd3);

read (fdl, &cl, 1);

read (fd2, &c2, 1);

read (£fd3, &c3, 1);

printf ("cl = %c, c2 = %c, c¢3 = %c\n",
cl, c2, c3);

Having fun with file descriptors

» What would this program print given a file containing ‘abcde’?

#include <sys/types.h>

int main(int argc, char *argvl])
{
int £dl;
int s = getpid() & Ox1;
char cl, c2;
char *fname=argv[1l];
fdl = open(fname, O RDONLY, O0);
read (fdl, &cl, 1);
if (fork()) { /* parent */
sleep(s);
read (fdl, &c2, 1);
printf ("Parent: cl = %c, c2 = %c\n", cl, c2);
} else {
sleep(l-s);
read (fdl, &c2, 1);
printf ("Child: ¢l = %c, c2 = %c\n", cl, c2);
}
exit (0);

Having fun with file descriptors

» What would be the content of the resulting file?

#include <sys/types.h>

int main (int argc, char *argvl])
{
int f£dl, f£d2, £d3;
char *fname=argv[1l];
fdl = open(fname, O CREAT| O TRUNC | O RDWR, S IRUSR |
write (fdl, "pqgqrs", 4);
fd3 = open(fname, O APPEND | O WRONLY, O0);
write (fdl, "jklmn", 5);
fd2 = dup(£fdl);
write(fd2, "wxyz", 4);
write (f£d3, "ef", 2);
exit (0) ;

S_IWUSR) ;

Pros/cons of Unix I/O

* Pros

— Unix I/O is the most general and lowest overhead form of I/O
« All other I/O packages are implemented using Unix I/O functions

— Unix I/O provides functions for accessing file metadata

 Cons
— Dealing with short counts is tricky and error prone

— Efficient reading of text lines requires some form of buffering,
also tricky and error prone

— Both of these issues are addressed by the standard 1/O

Pros/cons of Standard I/0O

* Pros:

— Buffering increases efficiency by decreasing the number of
read and write system calls

— Short counts are handled automatically

» Cons:
— Provides no function for accessing file metadata

— Standard I/O is not appropriate for input and output on
network sockets

— There are poorly documented restrictions on streams that
Interact badly with restrictions on sockets

Choosing I/O Functions

* General rule: Use the highest-level 1/O functions you
can.

— Many C programmers are able to do all of their work using the
standard /O functions.

» When to use standard 1/0O?
— When working with disk or terminal files.

* When to use raw Unix I/O
— When you need to fetch file metadata.

Choosing I/O Functions

* General rule: Use the highest-level 1/O functions you
can.

— Many C programmers are able to do all of their work using the
standard /O functions.

» When to use standard 1/0O?
— When working with disk or terminal files.

* When to use raw Unix I/O
— When you need to fetch file metadata.

Summary

» System level I/O from the programmer perspective
— For the underlying details — EECS 343

» Next time
— There is no next time ®

