
Fabián E. Bustamante, Spring 2010

Exceptional Control Flow II

Today

Process Hierarchy

Shells

Signals

Nonlocal jumps

Next time

I/O

2

ECF exists at all levels of a system

Exceptions

– Hardware and operating system

kernel software

Concurrent processes

– Hardware timer and kernel software

Signals

– Kernel software

Non-local jumps

– Application code

Previous Lecture

This Lecture

3

The world of multitasking

System runs many processes concurrently

– Process: executing program

• State consists of memory image + register values + program

counter

– Continually switches from one process to another

• Suspend process when it needs I/O resource or timer event

occurs

• Resume process when I/O available or given scheduling priority

– Appears to user(s) as if all processes executing

simultaneously

• Except possibly with lower performance

• Even though most systems can only execute one at a time

4

Programmer’s model of multitasking

Basic functions
– fork() spawns new process

• Called once, returns twice

– exit() terminates own process

• Called once, never returns

• Puts it into “zombie” status

– wait() and waitpid() wait for and reap terminated
children

– execl() and execve() run a new program in an existing
process

• Called once, (normally) never returns

Programming challenge
– Understanding the nonstandard semantics of the functions

– Avoiding improper use of system resources

• E.g. “Fork bombs” can disable a system.

5

Unix process hierarchy

Login shell

ChildChildChild

GrandchildGrandchild

[0]

Daemon
e.g. httpd

init [1]

6

Unix startup: Step 1

init [1]

[0] Process 0: handcrafted kernel process

Child process 1 execs /sbin/init

1. Pushing reset button loads the PC with the address of a small

bootstrap program.

2. Bootstrap program loads the boot block (disk block 0).
3. Boot block program loads kernel binary (e.g., /boot/vmlinux)

4. Boot block program passes control to kernel.

5. Kernel handcrafts the data structures for process 0.

Process 0 forks child process 1

7

Unix startup: Step 2

init [1]

[0]

gettyDaemons
e.g. ftpd, httpd

/etc/inittab
init forks and execs
daemons per
/etc/inittab, and forks
and execs a getty program
for the console

8

Unix startup: Step 3

init [1]

[0]

The getty process

execs a login

program
login

9

Unix startup: Step 4

init [1]

[0]

login reads login and passwd.

if OK, it execs a shell.
if not OK, it execs another getty

tcsh

10

Shell programs

A shell is an application program that runs programs

on behalf of the user.
– sh - Original Unix Bourne Shell

– csh - BSD Unix C Shell

– tcsh – Enhanced C Shell

– bash –Bourne-Again Shell

int main()

{

char cmdline[MAXLINE];

while (1) {

/* read */

printf("> ");

Fgets(cmdline, MAXLINE, stdin);

if (feof(stdin))

exit(0);

/* evaluate */

eval(cmdline);

}

}

Execution is a

sequence of

read/evaluate steps

11

Simple shell eval function

void eval(char *cmdline)

{

char *argv[MAXARGS]; /* argv for execve() */

int bg; /* should the job run in bg or fg? */

pid_t pid; /* process id */

bg = parseline(cmdline, argv);

if (!builtin_command(argv)) {

if ((pid = Fork()) == 0) { /* child runs user job */

if (execve(argv[0], argv, environ) < 0) {

printf("%s: Command not found.\n", argv[0]);

exit(0);

}

}

if (!bg) { /* parent waits for fg job to terminate */

int status;

if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");

}

else /* otherwise, don’t wait for bg job */

printf("%d %s", pid, cmdline);

}

}

12

Problem with simple shell example

Shell correctly waits for and reaps foreground jobs.

But what about background jobs?

– Will become zombies when they terminate.

– Will never be reaped because shell (typically) will not

terminate.

– Creates a memory leak that will eventually crash the kernel

when it runs out of memory.

Solution: Reaping background jobs requires a

mechanism called a signal

13

Signals

A signal is a small message that notifies a process
that an event of some type has occurred in the system
– Kernel abstraction for exceptions and interrupts.

– Sent from the kernel (sometimes at the request of another
process) to a process.

– Different signals are identified by small integer ID’s

– The only information in a signal is its ID and the fact that it
arrived

ID Name Default Action Corresponding Event

2 SIGINT Terminate Interrupt from keyboard (ctl-c)

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate & Dump Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

14

Signal concepts – sending

Sending a signal

– Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination process.

– Kernel sends a signal for one of the following reasons:

• Kernel has detected a system event such as divide-by-zero

(SIGFPE) or the termination of a child process (SIGCHLD)

• Another process has invoked the kill system call to explicitly

request the kernel to send a signal to the destination process.

15

Signal concepts – receiving

Receiving a signal

– A destination process receives a signal when it is forced by

the kernel to react in some way to the delivery of the signal.

– Three possible ways to react:

• Ignore the signal (do nothing)

• Terminate the process.

• Catch the signal by executing a user-level function called a

signal handler.

– Akin to a hardware exception handler being called in response to an

asynchronous interrupt.

16

Signal concepts – pending

A signal is pending if it has been sent but not yet

received.

– There can be at most one pending signal of any type.

– Important: Signals are not queued

• If a process has a pending signal of type k, then subsequent

signals of type k that are sent to that process are discarded.

A process can block the receipt of certain signals.

– Blocked signals can be delivered, but will not be received until

the signal is unblocked.

A pending signal is received at most once.

EECS 213 Introduction to Computer Systems

Northwestern University

17

Signal concepts – bit vectors

Kernel maintains pending and blocked bit vectors in

the context of each process.

– pending – represents the set of pending signals

• Kernel sets bit k in pending whenever a signal of type k is

delivered.

• Kernel clears bit k in pending whenever a signal of type k is

received

– blocked – represents the set of blocked signals

• Can be set and cleared by the application using the
sigprocmask function.

18

Process groups

All mechanisms for sending signals to processes rely

on the notion of process group

Every process belongs to exactly one process group

Fore-

ground

job

Back-

ground

job #1

Back-

ground

job #2

Shell

Child Child

pid=10

pgid=10

Foreground

process group 20

Background

process group 32

Background

process group 40

pid=20

pgid=20
pid=32

pgid=32
pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

getpgrp() – Return process

group of current process

setpgid() – Change

process group of a process

19

Sending signals with kill program

kill program sends arbitrary signal to a process or

process group

Examples
– kill –9 24818

• Send SIGKILL to process 24818

– kill –9 –24817

• Send SIGKILL to

every process in
process group 24817.

linux> ./forks 16

linux> Child1: pid=24818 pgrp=24817

Child2: pid=24819 pgrp=24817

linux> ps

PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh

24818 pts/2 00:00:02 forks

24819 pts/2 00:00:02 forks

24820 pts/2 00:00:00 ps

linux> kill -9 -24817

linux> ps

PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh

24823 pts/2 00:00:00 ps

linux>

20

Sending signals from the keyboard

Typing ctrl-c (ctrl-z) sends a SIGINT (SIGTSTP) to
every job in the foreground process group
– SIGINT– default action is to terminate each process

– SIGTSTP – default action is to stop (suspend) each process

Fore-

ground

job

Back-

ground

job #1

Back-

ground

job #2

Shell

Child Child

pid=10

pgid=10

Foreground

process group 20

Background

process

group 32

Background

process

group 40

pid=20

pgid=20
pid=32

pgid=32

pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

21

Example of ctrl-c and ctrl-z

linux> ./forks 17

Child: pid=24868 pgrp=24867

Parent: pid=24867 pgrp=24867

<typed ctrl-z>

Suspended

linux> ps a

PID TTY STAT TIME COMMAND

24788 pts/2 S 0:00 -usr/local/bin/tcsh -i

24867 pts/2 T 0:01 ./forks 17

24868 pts/2 T 0:01 ./forks 17

24869 pts/2 R 0:00 ps a

bass> fg

./forks 17

<typed ctrl-c>

linux> ps a

PID TTY STAT TIME COMMAND

24788 pts/2 S 0:00 -usr/local/bin/tcsh -i

24870 pts/2 R 0:00 ps a

22

Sending signals with kill function

void fork12()

{

pid_t pid[N];

int i, child_status;

for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)

while(1); /* Child infinite loop */

/* Parent terminates the child processes */

for (i = 0; i < N; i++) {

printf("Killing process %d\n", pid[i]);

kill(pid[i], SIGINT);

}

/* Parent reaps terminated children */

for (i = 0; i < N; i++) {

pid_t wpid = wait(&child_status);

if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));

else

printf("Child %d terminated abnormally\n", wpid);

}

}

linux % ./fork12

Killing process 578

Killing process 579

Killing process 580

Killing process 581

Killing process 582

Child 578 terminated abnormally

Child 580 terminated abnormally

Child 582 terminated abnormally

Child 581 terminated abnormally

Child 579 terminated abnormally

23

Receiving signals

Suppose kernel is returning from exception handler

and is ready to pass control to process p.

Kernel computes pnb = pending & ~blocked

– The set of pending nonblocked signals for process p

If (pnb == 0)

– Pass control to next instruction in the logical flow for p.

Else

– Choose least nonzero bit k in pnb and force process p to

receive signal k.

– The receipt of the signal triggers some action by p

– Repeat for all nonzero k in pnb.

– Pass control to next instruction in logical flow for p.

24

Default actions

Each signal type has a predefined default action,

which is one of:

– The process terminates

– The process terminates and dumps core.

– The process stops until restarted by a SIGCONT signal.

– The process ignores the signal.

25

Installing signal handlers

Signal modifies the default action associated with
the receipt of signal signum:

handler_t *signal(int signum, handler_t *handler)

Different values for handler:
– SIG_IGN: ignore signals of type signum

– SIG_DFL: revert to the default action on receipt of signals of
type signum.

– Otherwise, handler is the address of a signal handler

• Called when process receives signal of type signum

• Referred to as “installing” the handler

• Executing handler is “catching” or “handling” the signal

• When the handler executes its return statement, control passes
back to instruction in the control flow of the process that was
interrupted by receipt of the signal

26

Signal handling example

void int_handler(int sig)

{

printf("Process %d received signal %d\n",

getpid(), sig);

exit(0);

}

void fork13()

{

pid_t pid[N];

int i, child_status;

signal(SIGINT, int_handler);

. . .

}

linux> ./forks 13

Killing process 24973

Killing process 24974

Killing process 24975

Killing process 24976

Killing process 24977

Process 24977 received signal 2

Child 24977 terminated with exit status 0

Process 24976 received signal 2

Child 24976 terminated with exit status 0

Process 24975 received signal 2

Child 24975 terminated with exit status 0

Process 24974 received signal 2

Child 24974 terminated with exit status 0

Process 24973 received signal 2

Child 24973 terminated with exit status 0

linux>

27

Signal handler funkiness

int main()

{

int i, n;

char buf[MAXBUF];

if (signal(SIGCHLD, handler1) == SIG_ERR)

unix_error("signal error");

/* Parent creates children */

for (i = 0; i < 3; i++) {

if (Fork() == 0) {

printf("Hello from child %d\n", (int)getpid());

Sleep(1);

exit(0);

}

}

/* Parent waits for terminal input and then processes it */

if ((n = read(STDIN_FILENO, buf, sizeof(buf))) < 0)

unix_error("read");

printf("Parent processing input\n");

while (1)

;

exit(0);

}

Parent installs SIGCHLD handler

… and create three children

Each child says “hi”, sleeps for

1sec and leaves

Parent waits for an input and process

it; modeled as an infinite loop

28

Signal handler funkiness

void handler1(int sig)

{

pid_t pid;

if ((pid = waitpid(-1, NULL, 0)) < 0)

unix_error("waitpid error");

printf("Handler reaped child %d\n", (int)pid);

Sleep(2);

return;

}

linux> ./signal1

Hello from child 2916

Hello from child 2917

Hello from child 2918

Handler reaped child 2916

Handler reaped child 2917

<cr>

Parent processing input

^Z

[1]+ Stopped ./signal1

linux> ps

PID TTY TIME CMD

2235 pts/2 00:00:00 bash

2915 pts/2 00:01:05 signal1

2918 pts/2 00:00:00 signal1 <defunct>

2921 pts/2 00:00:00 ps

Pending signals are not queued
• For each signal type, just have single bit

indicating whether or not signal is pending

• Even if multiple processes have sent this

signal

29

Living with nonqueuing signals

void handler2(int sig)

{

pid_t pid;

while ((pid = waitpid(-1, NULL, 0)) > 0)

printf("Handler reaped child %d\n", (int)pid);

if (errno != ECHILD)

unix_error("waitpid error");

Sleep(2);

return;

}

linux> ./signal2

Hello from child 2983

Hello from child 2984

Hello from child 2985

Handler reaped child 2983

Handler reaped child 2984

Handler reaped child 2985

<cr>

Parent processing input

OK, no zombies left; still, there is a

portability problem there …

Must check all terminated jobs – typically

loop with wait

30

Slow system calls interrupted

int main()

{

int i, n;

char buf[MAXBUF];

if (signal(SIGCHLD, handler1) == SIG_ERR)

unix_error("signal error");

/* Parent creates children */

for (i = 0; i < 3; i++) {

if (Fork() == 0) {

printf("Hello from child %d\n", (int)getpid());

Sleep(1);

exit(0);

}

}

/* Parent waits for terminal input and then processes it */

if ((n = read(STDIN_FILENO, buf, sizeof(buf))) < 0)

unix_error("read");

printf("Parent processing input\n");

while (1)

;

exit(0);

}

In some systems (Solaris) slow

system calls like read are not

restarted automatically after

interrupted

31

Slow system calls interrupted

int main()

{

int i, n;

char buf[MAXBUF];

if (signal(SIGCHLD, handler1) == SIG_ERR)

unix_error("signal error");

/* Parent creates children */

for (i = 0; i < 3; i++) {

if (Fork() == 0) {

printf("Hello from child %d\n", (int)getpid());

Sleep(1);

exit(0);

}

}

/* Parent waits for terminal input and then processes it */

if ((n = read(STDIN_FILENO, buf, sizeof(buf))) < 0)

unix_error("read");

printf("Parent processing input\n");

while (1)

;

exit(0);

}

In some systems (Solaris) slow

system calls like read are not

restarted automatically after

interrupted

32

Signal handler funkiness

int main() {

int i, n;

char buf[MAXBUF];

pid_t pid;

if (signal(SIGCHLD, handler2) == SIG_ERR)

unix_error("signal error");

/* Parent creates children */

for (i = 0; i < 3; i++) {

pid = Fork();

if (pid == 0) {

printf("Hello from child %d\n", (int)getpid());

Sleep(1);

exit(0);

}

}

/* Manually restart the read call if it is interrupted */

while ((n = read(STDIN_FILENO, buf, sizeof(buf))) < 0)

if (errno != EINTR)

unix_error("read error");

printf("Parent processing input\n");

while (1)

;

exit(0);

}

EINTR return code indicates read

returned prematurely after interrupted

33

External event handling

A program that reacts to externally generated events

(ctrl-c)

#include <stdlib.h>

#include <stdio.h>

#include <signal.h>

void handler(int sig) {

printf("You think hitting ctrl-c will stop the bomb?\n");

sleep(2);

printf("Well...");

fflush(stdout);

sleep(1);

printf("OK\n");

exit(0);

}

main() {

signal(SIGINT, handler); /* installs ctl-c handler */

while(1) {

}

}

34

Internal event handling

#include <stdio.h>

#include <signal.h>

int beeps = 0;

/* SIGALRM handler */

void handler(int sig) {

printf("BEEP\n");

fflush(stdout);

if (++beeps < 5)

alarm(1);

else {

printf("BOOM!\n");

exit(0);

}

}

main() {

signal(SIGALRM, handler);

alarm(1); /* send SIGALRM in

1 second */

while (1) {

/* handler returns here */

}

}

linux> a.out

BEEP

BEEP

BEEP

BEEP

BEEP

BOOM!

bass>

35

Nonlocal jumps: setjmp/longjmp

Powerful (but dangerous) user-level mechanism for
transferring control to an arbitrary location

– Controlled way to break the procedure call/return discipline

– Useful for error recovery and signal handling

int setjmp(jmp_buf j)

– Must be called before longjmp

– Identifies a return site for a subsequent longjmp.

– Called once, returns one or more times

Implementation:

– Remember where you are by storing the current register

context, stack pointer, and PC value in jmp_buf.

– Return 0

36

setjmp/longjmp (cont)

void longjmp(jmp_buf j, int i)

– Meaning:

• return from the setjmp remembered by jump buffer j again...

• …this time returning i instead of 0

– Called after setjmp

– Called once, but never returns

longjmp Implementation:

– Restore register context from jump buffer j

– Set %eax (the return value) to i

– Jump to the location indicated by the PC stored in jump buf j.

setjmp/longjmp example

An typical application – return from a deeply nested

function call when detecting an error

37

#include <setjmp.h>

jmp_buf buf;

main()

{

int rc;

rc = setjmp(buf);

if (rc == 0) /* First time through */

p1(); /* p1 calls p2, which calls p3 */

else if (rc == 1) {

printf("back in main, from p3, due to an error\n");

else

...

}

...

p3() {

<error checking code>

if (error)

longjmp(buf, 1)

}

38

Putting it all together

Another use – not returning from a handler to the

interrupted instruction but to another specific location

Program that restarts itself when ctrl-c’d

#include <stdio.h>

#include <signal.h>

#include <setjmp.h>

sigjmp_buf buf;

void handler(int sig) {

siglongjmp(buf, 1);

}

main() {

signal(SIGINT, handler);

if (!sigsetjmp(buf, 1))

printf("starting\n");

else

printf("restarting\n");

while(1) {

sleep(1);

printf("processing...\n");

}

}

bass> a.out

starting

processing...

processing...

restarting

processing...

processing...

processing...

restarting

processing...

restarting

processing...

processing...

Ctrl-c

Ctrl-c

Ctrl-c

39

Limitations of nonlocal jumps

Works within stack discipline

– Can only long jump to environment of function that has been

called but not yet completed

jmp_buf env;

P1()

{

if (setjmp(env)) {

/* Long Jump to here */

} else {

P2();

}

}

P2()

{ . . . P2(); . . . P3(); }

P3()

{

longjmp(env, 1);

}

P1

P2

P2

P2

P3

env

P1

Before longjmp

After longjmp

40

Limitations of long jumps (cont.)

Works within stack discipline

– Can only long jump to environment of function that has been

called but not yet completed

jmp_buf env;

P1()

{

P2(); P3();

}

P2()

{

if (setjmp(env)) {

/* Long Jump to here */

}

}

P3()

{

longjmp(env, 1);

}

env

P1

P2

At setjmp

P1

P3
env

At longjmp

X

P1

P2

P2 returns

env

X

41

Summary

Signals provide process-level exception handling

– Can generate from user programs

– Can define effect by declaring signal handler

Some caveats

– Very high overhead

• >10,000 clock cycles

• Only use for exceptional conditions

– Don’t have queues

• Just one bit for each pending signal type

Nonlocal jumps provide exceptional control flow

within process

– Within constraints of stack discipline

