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Dynamic memory allocation
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Why you need it? Memory needs may be unknown at 

runtime

Explicit vs. implicit memory allocator
– Explicit:  application allocates and frees space 

• E.g.,  malloc and free in C

– Implicit: application allocates, but does not free space

• E.g. garbage collection in Java, ML or Lisp

Allocation
– In both cases the memory allocator provides an abstraction of 

memory as a set of blocks

– Doles out free memory blocks to application



Malloc package

#include <stdlib.h>

void *malloc(size_t size)

– If successful:

• Returns a pointer to a memory block of at least size bytes, 

(typically) aligned to 8-byte boundary.

• If size == 0, returns NULL

– If unsuccessful: returns NULL (0) and sets errno.

void *realloc(void *p, size_t size)

– Changes size of block p and returns pointer to new block.

– Contents of new block unchanged up to min of old and new 
size.

void free(void *p)
– Returns the block pointed at by p to pool of available memory

– p must come from a previous call to malloc or realloc.
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Process memory image

kernel virtual memory

Memory mapped region for

shared libraries

run-time heap (via malloc)

program text (.text)

initialized data (.data)

uninitialized data (.bss)

stack

0

%esp

memory invisible to

user code

the “brk” ptr

Allocators request

additional heap memory

from the operating 
system using the sbrk

function.

error = sbrk(amt_more)
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Malloc example

void foo(int n, int m) {

int i, *p;

/* allocate a block of n ints */

if ((p = (int *) malloc(n * sizeof(int))) == NULL) {

perror("malloc");

exit(0);

}

for (i=0; i<n; i++) p[i] = i;

/* add m bytes to end of p block */

if ((p = (int *) realloc(p, (n+m) * sizeof(int))) == NULL) {

perror("realloc");

exit(0);

}

for (i=n; i < n+m; i++) p[i] = i;

/* print new array */  

for (i=0; i<n+m; i++) 

printf("%d\n", p[i]);

free(p); /* return p to available memory pool */

}
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Allocation examples

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)
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Constraints

Applications:

– Can issue arbitrary sequence of allocation and free requests

– Free requests must correspond to an allocated block

Allocators

– Can’tcontrolnumberorsizeofallocatedblocks

– Must respond immediately to all allocation requests

• i.e.,can’treorderorbufferrequests

– Must allocate blocks from free memory

• i.e., can only place allocated blocks in free memory

– Must align blocks so they satisfy all alignment requirements

• 8 byte alignment for GNU malloc (libc malloc) on Linux boxes

– Can only manipulate and modify free memory

– Can’tmovetheallocatedblocksoncetheyareallocated

• i.e., compaction is not allowed
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Goals of good malloc/free 

Primary goals

– Good time performance for malloc and free

• Ideally should take constant time (not always possible)

• Should certainly not take linear time in the number of blocks

– Good space utilization

• User allocated structures should be large fraction of the heap.

• Wanttominimize“fragmentation”.

Some other goals

– Good locality properties

• Structures allocated close in time should be close in space

• “Similar”objectsshouldbeallocatedcloseinspace

– Robust

• Can check that free(p1) is on a valid allocated object p1

• Can check that memory references are to allocated space
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Performance goals: throughput

Given some sequence of malloc and free requests:

– R0, R1, ..., Rk, ... , Rn-1

Want to maximize throughput and peak memory 

utilization.

– These goals are often conflicting

Throughput:

– Number of completed requests per unit time

– Example:

• 5,000 malloc calls and 5,000 free calls in 10 seconds 

• Throughput is 10,000 operations/second.
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Performance goals: Peak mem utilization

Given some sequence of malloc and free requests:
– R0, R1, ..., Rk, ... , Rn-1

Def: Aggregate payload Pk: 

malloc(p) results in a block with a payload of p bytes.. 

After request Rk has completed, the aggregate payload Pk is 
the sum of currently allocated payloads.

Def: Current heap size is denoted by Hk

Assume that Hk is monotonically nondecreasing

Def: Peak memory utilization: 
– After k requests, peak memory utilization is:

• Uk = ( maxi<k Pi )  /  Hk
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Internal fragmentation

• Poor memory utilization caused by fragmentation.

– Comes in two forms: internal and external fragmentation

Internal fragmentation

– For some block, internal fragmentation is the difference 

between the block size and the payload size.

– Caused by overhead of maintaining heap data structures, 

padding for alignment purposes, or explicit policy decisions 

(e.g., not to split the block).

– Depends only on the pattern of previous requests, and thus is 

easy to measure.

payload
Internal 

fragmentation

block

Internal 

fragmentation
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External fragmentation

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6)

oops!

Occurs when there is enough aggregate heap memory, but no single

free block is large enough

External fragmentation depends on the pattern of future requests, and

thus is difficult to measure. 
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Implementation issues

How do we know how much memory to free just given 

a pointer?

How do we keep track of the free blocks?

What do we do with the extra space when allocating a 

structure that is smaller than the free block it is placed 

in?

How do we pick a block to use for allocation – many 

might fit?

How do we reinsert freed block?
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Knowing how much to free

Standard method

–Keep the length of a block in the word preceding the 

block.

• This word is often called the header field or header

–Requires an extra word for every allocated block

free(p0)

p0 = malloc(4) p0

Block size data

5
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Keeping track of free blocks

• Method 1: Implicit list using lengths -- links all blocks

• Method 2: Explicit list among the free blocks using 
pointers within the free blocks

• Method 3: Segregated free list
- Different free lists for different size classes

• Method 4: Blocks sorted by size
– Can use a balanced tree (e.g. Red-Black tree) with 

pointers within each free block, and the length used as a 
key

5 4 26

5 4 26
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Method 1: Implicit List

Need to identify whether each block is free or 

allocated

– Can use extra bit

– Bit can be put in the same word as the size if block 

sizes are always multiples of two (mask out low 

order bit when reading size).

size

1 word

Format of

allocated and

free blocks
payload

a = 1: allocated block  

a = 0: free block

size: block size

payload: application data

(allocated blocks only)

a

optional

padding
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Implicit list: Finding a free block

First fit:
– Search list from beginning, choose first free block that 

fits

– Can take linear time in total number of blocks (allocated 
and free)

– Inpracticeitcancause“splinters”atbeginningoflist

Next fit:
– Like first-fit, but search list from location of end of 

previous search

– Research suggests that fragmentation is worse 

Best fit:
– Search the list, choose the free block with the closest 

size that fits

– Keeps fragments small --- usually helps fragmentation

– Will typically run slower than first-fit
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Implicit list: Allocating in free block

• Allocating in a free block - splitting

– Since allocated space might be smaller than free 

space, we might want to split the block

void addblock(ptr p, int len) {

int newsize = ((len + 1) >> 1) << 1;  // add 1 and round up

int oldsize = *p & -2;                // mask out low bit

*p = newsize | 1;                     // set new length

if (newsize < oldsize)

*(p+newsize) = oldsize - newsize;   // set length in remaining

}                                       //   part of block

4 4 26

4 24

p

24

addblock(p, 2)
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Implicit list: Freeing a block

Simplest implementation:

– Only need to clear allocated flag

– Butcanleadto“falsefragmentation”

There is enough free space, but the allocator won’t 

be able to find it

4 24 2

free(p) p

4 4 2

4

4 2

malloc(5)
Oops!
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Implicit list: Coalescing

• Join (coelesce) with next and/or previous block 
if they are free

– Coalescing with next block

– But how do we coalesce with previous block?

4 24 2

free(p) p

4 4 2

4

6

void free_block(ptr p) {

*p = *p & -2;          // clear allocated flag

next = p + *p;         // find next block

if ((*next & 1) == 0)

*p = *p + *next;    // add to this block if

}                         //    not allocated
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Implicit list: Bidirectional coalescing 

• Boundary tags [Knuth73]
– Replicate size/allocated word at bottom of free blocks

– Allowsustotraversethe“list”backwards,butrequiresextra
space

– Important and general technique!

size

1 word

Format of

allocated and

free blocks

payload and

padding

a = 1: allocated block  

a = 0: free block

size: total block size

payload: application data

(allocated blocks only)

a

size aBoundary tag

(footer)

4 4 4 4 6 46 4

Header
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Constant time coalescing

allocated

allocated

allocated

free

free

allocated

free

free

block being

freed

Case 1 Case 2 Case 3 Case 4
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m1 1

Constant time coalescing (Case 1)

m1 1

n 1

n 1

m2 1

m2 1

m1 1

m1 1

n 0

n 0

m2 1

m2 1
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m1 1

Constant time coalescing (Case 2)

m1 1

n+m2 0

n+m2 0

m1 1

m1 1

n 1

n 1

m2 0

m2 0
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m1 0

Constant time coalescing (Case 3)

m1 0

n 1

n 1

m2 1

m2 1

n+m1 0

n+m1 0

m2 1

m2 1
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m1 0

Constant time coalescing (Case 4)

m1 0

n 1

n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0
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Summary of key allocator policies

Placement policy:

– First fit, next fit, best fit, etc.

– Trades off lower throughput for less fragmentation

Splitting policy:

– When do we go ahead and split free blocks?

– How much internal fragmentation are we willing to tolerate?

Coalescing policy:

– Immediate coalescing: coalesce adjacent blocks each time 

free is called 

– Deferred coalescing: try to improve performance of free by 

deferring coalescing until needed. e.g.,

• Coalesce as you scan the free list for malloc.

• Coalesce when the amount of external fragmentation reaches 

some threshold.
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Implicit lists: summary

Implementation: very simple

Allocate: linear time worst case

Free: constant time worst case -- even with coalescing

Memory usage: will depend on placement policy

– First fit, next fit or best fit

Not used in practice for malloc/free because of linear 

time allocate.  Used in many special purpose 

applications.

However, the concepts of splitting and boundary tag 

coalescing are general to all allocators.
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Implicit mem. mgmnt: Garbage collection

Garbage collection: automatic reclamation of heap-
allocated storage -- application never has to free

Common in functional languages, scripting languages, 

and modern object oriented languages:
– Lisp, ML, Java, Perl, Mathematica, 

Variants (conservative garbage collectors) exist for C 

and C++
– Cannot collect all garbage

void foo() {

int *p = malloc(128);

return; /* p block is now garbage */

}
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Garbage collection

How does the memory manager know when memory 

can be freed?

– In general we cannot know what is going to be used in the 

future since it depends on conditionals

– But we can tell that certain blocks cannot be used if there are 

no pointers to them

Need to make certain assumptions about pointers

– Memory manager can distinguish pointers from non-pointers

– All pointers point to the start of a block 
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Memory as a graph

We view memory as a directed graph
– Each block is a node in the graph 

– Each pointer is an edge in the graph

– Locations not in the heap that contain pointers into the heap 
are called root nodes  (e.g. registers, locations on the stack, 
global variables)

Root nodes

Heap nodes

Not-reachable

(garbage)

reachable

 A node (block) is reachable if there is a path from any root to that node.

 Non-reachable nodes are garbage (never needed by the application)
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Mark and sweep collecting

Can build on top of malloc/free package

– Allocate using malloc untilyou“runoutofspace”

When out of space:

– Use extra mark bit in the head of each block

– Mark: Start at roots and set mark bit on all reachable 

memory

– Sweep: Scan all blocks and free blocks that are not marked

Before mark

root

After mark

After sweep free

Mark bit set

free
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Memory-related bugs

Why the fear?

– Symptoms typically appear far, in time and space, 

from the source

Some common bugs worth looking at

– Dereferencing bad pointers

– Reading uninitialized memory

– Overwriting memory

– Referencing nonexistent variables

– Freeing blocks multiple times

– Referencing freed blocks

– Failing to free blocks
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Dereferencing bad pointers

The classic scanf bug

Should be &val
– Best case – program terminates with an exception

– Worst case – contents of val corresponds to a valid r/w area 
and we overwrite memory ...

scanf(“%d”, val);
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While bss memory locations are always initialized to 
zero,that’snotthecasefortheheap

Assuming that heap data is initialized to zero

Reading uninitialized memory

/* return y = Ax */

int *matvec(int **A, int *x) { 

int *y = malloc(N*sizeof(int));

int i, j;

for (i=0; i<N; i++)

for (j=0; j<N; j++)

y[i] += A[i][j]*x[j];

return y;

}
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Overwriting memory

Allocating the (possibly) wrong sized object

Should have been 
p = malloc(N*sizeof(int*));

36

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {

p[i] = malloc(M*sizeof(int));

}



Overwriting memory

Off-by-one errors – allocates N, tries to initialize N+1
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int **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {

p[i] = malloc(M*sizeof(int));

}



Overwriting memory

Not checking the max string size

Basis for classic buffer overflow attacks

– 1988 Internet worm

– Modern attacks on Web servers
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char s[8];

int i;

gets(s);  /* reads “123456789” from stdin */ 



Overwriting memory

Referencing a pointer instead of the object it points to
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int *binheapDelete(int **binheap, int *size) {

int *packet;

packet = binheap[0];

binheap[0] = binheap[*size - 1];

*size--;

heapify(binheap, *size, 0);

return(packet);

}



Overwriting memory

Misunderstanding pointer arithmetic
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int *search(int *p, int val) {

while (*p && *p != val)

p += sizeof(int);

return p;

}



Referencing nonexistent variables

Forgetting that local variables disappear when 
a function returns
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int *foo () {

int val;

return &val;

}  



Freeing blocks multiple times

Nasty!

x = malloc(N*sizeof(int));

<manipulate x>

free(x);

y = malloc(M*sizeof(int));

<manipulate y>

free(x);
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Referencing freed blocks

Evil! 

x = malloc(N*sizeof(int));

<manipulate x>

free(x);

...

y = malloc(M*sizeof(int));

for (i=0; i<M; i++)

y[i] = x[i]++;
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Failing to free blocks (memory leaks)

Slow, long-term killer

foo() {

int *x = malloc(N*sizeof(int));

...

return;

}
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Summary

Memory matters

Memory is not unbounded
– It must be allocated and managed

– Many applications are memory dominated

• Especially those based on complex, graph algorithms

Memory referencing bugs especially 

pernicious
– Effects are distant in both time and space
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