
Fabián E. Bustamante, Spring 2010

Machine-Level Prog. V – Miscellaneous Topics

Today
Buffer overflow

Extending IA32 to 64 bits

Next time
Memory

2

Internet worm and IM war

November, 1988

– Internet Worm attacks thousands of Internet hosts.

– How did it happen? Three ways to spread

• Copy itself into trusted hosts through rexec/rsh

• Use sendmail to propagate, through a hole in its debug mode

• And the most effective?

July, 1999

– Microsoft launches MSN Messenger (IM system).

– Messenger clients can access popular AOL Instant

Messaging Service (AIM) servers

AIM

server

AIM

client

AIM

client

MSN

client

MSN

server

3

Internet worm and IM war (cont.)

August 1999

– Mysteriously, Messenger clients can no longer access AIM

servers.

– Microsoft and AOL begin the IM war:

• AOL changes server to disallow Messenger clients

• Microsoft makes changes to clients to defeat AOL changes.

• At least 13 such skirmishes.

– How did it happen?

The Internet worm and AOL/Microsoft war were both

based on stack buffer overflow exploits!
• many Unix functions do not check argument sizes.

• allows target buffers to overflow.

/* Get string from stdin */

char *gets(char *s)

{

int c;

char *dest = s;

int gotchar = 0;

while ((c = getchar()) != ‘\n’ && c != EOF) {

*dest++ = c;

gotchar = 1;

}

*dest++ = '\0';

if *c == EOF && !gotchar)

return NULL;

return s;

}

4

String library code

Implementation of Unix function gets

– No way to specify limit on number of characters to read

Similar problems with other Unix functions

– strcpy: Copies string of arbitrary length

– scanf, fscanf, sscanf, when given %s conversion specification

No bounds checking!

5

Vulnerable buffer code

int main()

{

printf("Type a string:");

echo();

return 0;

}

/* Echo Line */

void echo()

{

char buf[4]; /* Way too small! */

gets(buf);

puts(buf);

}

6

Buffer overflow executions

unix>./bufdemo

Type a string:123

123

unix>./bufdemo

Type a string:12345

Segmentation Fault

unix>./bufdemo

Type a string:12345678

Segmentation Fault

7

Buffer overflow stack

echo:

pushl %ebp # Save %ebp on stack

movl %esp,%ebp

subl $20,%esp # Allocate space on stack

pushl %ebx # Save %ebx

addl $-12,%esp # Allocate space on stack

leal -4(%ebp),%ebx # Compute buf as %ebp-4

pushl %ebx # Push buf on stack

call gets # Call gets

. . .

/* Echo Line */

void echo()

{

char buf[4]; /* Way too small! */

gets(buf);

puts(buf);

}

Return Address

Saved %ebp

[3][2][1][0] buf

%ebp

Stack

Frame
for main

Stack

Frame
for echo

8

Buffer overflow stack example

Before call
to gets

unix> gdb bufdemo

(gdb) break echo

Breakpoint 1 at 0x8048583

(gdb) run

Breakpoint 1, 0x8048583 in echo ()

(gdb) print /x *(unsigned *)$ebp

$1 = 0xbffff8f8

(gdb) print /x *((unsigned *)$ebp + 1)

$3 = 0x804864d

8048648: call 804857c <echo>

804864d: mov 0xffffffe8(%ebp),%ebx # Return Point

Return Address

Saved %ebp

[3][2][1][0] buf

%ebp

Stack

Frame
for main

Stack

Frame
for echo

0xbffff8d8

Return Address

Saved %ebp

[3][2][1][0] buf

Stack

Frame
for main

Stack

Frame
for echo

bf ff f8 f8

08 04 86 4d

xx xx xx xx

9

Buffer overflow example #1

Before Call to gets Input = “123”

No Problem

0xbffff8d8

Return Address

Saved %ebp

[3][2][1][0] buf

Stack

Frame
for main

Stack

Frame
for echo

bf ff f8 f8

08 04 86 4d

00 33 32 31

Return Address

Saved %ebp

[3][2][1][0] buf

%ebp

Stack

Frame
for main

Stack

Frame
for echo

10

Buffer overflow stack example #2

Input = “12345”

8048592: push %ebx

8048593: call 80483e4 <_init+0x50> # gets

8048598: mov 0xffffffe8(%ebp),%ebx

804859b: mov %ebp,%esp

804859d: pop %ebp # %ebp gets set to invalid value

804859e: ret

echo code:

0xbffff8d8

Return Address

Saved %ebp

[3][2][1][0] buf

Stack

Frame
for main

Stack

Frame
for echo

bf ff 00 35

08 04 86 4d

34 33 32 31

Return Address

Saved %ebp

[3][2][1][0] buf

%ebp

Stack

Frame
for main

Stack

Frame
for echo

Saved value of %ebp set

to 0xbfff0035

Bad news when later
attempt to restore %ebp

11

Buffer overflow stack example #3

Input = “12345678”

Return Address

Saved %ebp

[3][2][1][0] buf

%ebp

Stack

Frame
for main

Stack

Frame
for echo

8048648: call 804857c <echo>

804864d: mov 0xffffffe8(%ebp),%ebx # Return Point

0xbffff8d8

Return Address

Saved %ebp

[3][2][1][0] buf

Stack

Frame
for main

Stack

Frame
for echo

38 37 36 35

08 04 86 00

34 33 32 31

Invalid address

No longer pointing to
desired return point

%ebp and return

address corrupted

12

Malicious use of buffer overflow

Input string contains byte representation of executable code

Overwrite return address with address of buffer

When bar() executes ret, will jump to exploit code

void bar() {

char buf[64];

gets(buf);

...

}

void foo(){

bar();

...

}

Stack

after call to
gets()

B

return

address

A

foo

stack

frame

bar

stack

frame

B

exploit

code

pad

data

written

by
gets()

13

Exploits based on buffer overflows

Buffer overflow bugs allow remote machines to

execute arbitrary code on victim machines.

Internet worm

– Early versions of the finger server (fingerd) used gets() to

read the argument sent by the client:

• finger droh@cs.cmu.edu

– Worm attacked fingerd server by sending phony argument:

• finger “exploit-code padding new-return-

address”

• exploit code: executed a root shell on the victim machine with a

direct TCP connection to the attacker.

14

Exploits based on buffer overflows

Buffer overflow bugs allow remote machines to

execute arbitrary code on victim machines.

IM War

– AOL exploited existing buffer overflow bug in AIM clients

– exploit code: returned 4-byte signature (the bytes at some

location in the AIM client) to server.

– When Microsoft changed code to match signature, AOL

changed signature location.

15

Email from a supposed consultant

Date: Wed, 11 Aug 1999 11:30:57 -0700 (PDT)

From: Phil Bucking <philbucking@yahoo.com>

Subject: AOL exploiting buffer overrun bug in their own software!

To: rms@pharlap.com

Mr. Smith,

I am writing you because I have discovered

something that I think you might find

interesting because you are an Internet

security expert with experience in this area.

I have also tried to contact AOL but received

no response.

I am a developer who has been working on a revolutionary new instant

messaging client that should be released later this year.

...

It appears that the AIM client has a buffer overrun bug. By itself

this might not be the end of the world, as MS surely has had its share.

But AOL is now *exploiting their own buffer overrun bug* to help in

its efforts to block MS Instant Messenger.

....

Since you have significant credibility with the press I hope that you

can use this information to help inform people that behind AOL's

friendly exterior they are nefariously compromising peoples' security.

Sincerely,

Phil Bucking

Founder, Bucking Consulting

philbucking@yahoo.com

Later determined to be from MS

16

System-level protection

Stack randomization

– At start of program, allocate random amount of stack space

– Makes it difficult to predict beginning of inserted code

– Brute force solution – “nop sled” – keep adding nop before the

exploit code

#include <stdio.h>

int main()

{

int local;

printf("local at %p\n", &local);

return 0;

}

fabianb@eleuthera:~$./stackAddress

local at 0x7ffff296f6cc

fabianb@eleuthera:~$./stackAddress

local at 0x7fff764124fc

fabianb@eleuthera:~$./stackAddress

local at 0x7fffe48e4afc

fabianb@eleuthera:~$./stackAddress

local at 0x7fff4893664c

1. echo:

2. pushl %ebp

3. movl %esp, %ebp

4. pushl %ebx

5. subl $36, %esp

6. movl %gs:20, %eax

7. movl %eax, -12(%ebp)

8. xorl %eax, %eax

9. leal -20(%ebp), %ebx

10. movl %ebx, (%esp)

11. call gets

12. movl %ebx, (%esp)

13. call puts

14. movl -12(%ebp), %eax

15. xorl %gs:20, %eax

16. je .L9

17. call __stack_chk_fail
17

System-level protection

Stack corruption detection

– Detect when there has been an out-of-bound write

– Store a canary value (randomly generated) in stack frame

between any local buffer and rest of the stack

– To run overflow example, compile with -fno-stack-protector

Read value from a

special, read-only

segment in memory

Store it on the stack at
offset -12 from %ebp

Check the canary is fine

using xorl (0) if the two

values are identical

18

System-level protection

Limiting executable code regions

– Virtual memory is divided into pages

– Each page can be assigned a read/write/execute control

– x86 merged read and execute into a single 1-bit flag

– Since stack has to be readable → executable

– Now, AMD and Intel after, add executable space protection

• A NX (for “No eXecute”) bit in the page table

19

Avoiding overflow vulnerability

Use library routines that limit string lengths

– fgets instead of gets

– strncpy instead of strcpy

– Don’t use scanf with %s conversion specification

• Use fgets to read the string

/* Echo Line */

void echo()

{

char buf[4]; /* Way too small! */

fgets(buf, 4, stdin);

puts(buf);

}

x86-64: Extending IA32 to 64 bits

New hardware capacities but same instruction set!

– 32-bit word size is limiting – only 4GB virtual address space

• A serious problem for applications working on large data-sets

e.g. datamining, scientific computing

Need larger word size – next logical: 64b

– DEC Alpha 1992

– Sun Microsystems 1995

The price of backward compatibility

– Intel & Hewlett-Packard 2001

• IA64 – a totally new instruction set

– AMD 2003

• x86-64 – evolution of Intel IA32 instruction set to 64b; fully

backward compatibility

• AMD took over and forced Intel to backtrack

• Intel now offers Pentium 4 Xeon

20

21

Data types

Note pointers (now potentially given access to 264

bytes) and long integers

C dec Intel Suffix X86-64 size IA32 size

char Byte b 1 1

short Word w 2 2

int Double word l 4 4

long int Quad word q 8 4

long long

int

Quad word q 8 8

char * Quad word q 8 4

float Single prec s 4 4

double Double prec d 8 8

long

double

Extended

prec

t 10/16 10/12

22

A simple example

Some assembly code differences

long int simple_l (long int*xp, long int y)

{

long int t = *xp + y;

*xp = t;

return t;

}

% gcc –O1 –S –m64 simple.c

Movq instead of movl

Return value in %rax

No stack frame, arguments

passed in registers

1. simple_l:

2. movq %rsi, %rax

3. addq (%rdi), %rax

4. movq %rax, (%rdi)

5. ret

1. simple_l:

2. pushl %ebp

3. movl %esp, %ebp

4. movl 8(%ebp), %edx

5. movl 12(%ebp), %eax

6. addl (%edx), %eax

7. movl %eax, (%edx)

8. pop %ebp

9. ret

% gcc –O1 –S –m32 simple.c

23

Accessing information

Summary of changes to registers

– Double number of registers to 16

– All registers are 64b long

• Extended %rax, %rcx, %rdx, %rbx, %rsi, %rdi,

%rsp, %rbp

• New %r8-%r15

– Low-order 32, 16 and 8 bits of each register can be
accessed directly (Giving, for example, %eax, %ax,

%al)

– For backward compatibility, the second byte of %rax,

%rcx, %rdx, and %rbx can be accessed directly

(Getting, for example, %ah)

Same addressing forms plus a PC-relative (pc is in
%rip) operand addressing mode

add 0x200ad1(%rip), %rax

24

Arithmetic instructions and control

To each arithmetic instruction class seen, add
instructions that operate on quad words with suffix q

addq %rdi, %rsi

GCC must carefully chose operations when mixing

operands of different sizes

For control, add cmpq and testq to compare and test

quad words

25

Procedures in x86-64

Some highlights

– Up to the first 6 arguments are passed via registers

– callq stores a 64-bit return address in the stack

– Many functions don’t even need a stack frame

– Functions can access storage on the stack up to 128 bytes

beyond current stack pointer value; this is so you can store

information there without altering the stack pointer

– No frame pointer; references are made relative to stack

pointer

– There are also a few callee-save registers and only two caller-
save (%r10 and %r11, you can also use argument passing

registers)

Argument passing

Up to 6 integral arguments can be passed via regs

The rest using the stack

26

Proc:

movq 16(%rsp), %r10 # Fetch a4p (64b)

addq %rdi, (%rsi) # *a1p += a1 (64b)

addl %edx, (%rcx) # *a2p += a2 (32b)

addw %r8w, (%r9) # *a3p += a3 (16b)

movzbl 8(%rsp), %eax # Fetch a4 (8b)

addb %al, (%r10) # *a4p += a4 (8b)

ret

void proc(long a1, long *a1p,

int a2, int *a2p,

short a3, short *a3p,

char a4, char *a4p)

{

*a1p += a1;

*a2p += a2;

*a3p += a3;

*a4p += a4;

}

Oper. size/

Argument #

1 2 3 4 5 6

64 %rdi %rsi %rdx %rcx %r8 %r9

32 %edi %esi %edx %ecx %r8d %r9d

16 %di %si %dx %cx %r8w %r9w

8 %dil %sil %dl %cl %r8b %r9b

Registers are used in an specific order

27

Final observations

Working with strange code

– Important to analyze nonstandard cases

• E.g., what happens when stack corrupted due to buffer overflow

– Helps to step through with GDB

Thanks to AMD, x86 has caught up with RISC from

early 1980s!

Moving from 32b to 64b, more memory needed for

pointers; of course

Nevertheless, 64b operating systems and applications

will become commonplace

