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IA32 Processors

Totally dominate computer market

Evolutionary design

– Backward compatible up to 8086 introduced in 1978

– Added more features as time goes on

Complex Instruction Set Computer (CISC)

– Many different instructions with many different formats

• But, only small subset encountered with Linux programs

– Hard to match performance of RISC (Reduced …)

• But, Intel has done just that!

X86 evolution clones: Advanced Micro Devices (AMD)

– Historically followed just behind Intel

– Then hired designers from DEC and others, built Opteron

(competitor to Pentium 4), developed x86-64

– Intel has been quicker w/ multi-core design
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X86 Evolution: Programmer’s view 

Name Date Transistors Comments

8086 1978 29k 16-bit processor, basis for IBM PC & DOS; limited to 1MB 

address space

80286 1982 134K Added elaborate, but not very useful, addressing scheme; 

basis for IBM PC AT and Windows

386 1985 275K Extended to 32b, added “flat addressing”, capable of 

running Unix, Linux/gcc uses

486 1989 1.9M Improved performance; integrated FP unit into chip

Pentium 1993 3.1M Improved performance

PentiumPro 1995 6.5M Added conditional move instructions; big change in 

underlying microarch (called P6 internally)

Pentium II 1997 7M Merged Pentium/MMZ and PentiumPro implementing MMX 

instructions within P6

Pentium III 1999 8.2M Instructions for manipulating vectors of integers or floating 

point; later versions included Level2 cache

Pentium 4 2001 42M 8B ints and floating point formats to vector instructions

Pentium 4E 2004 125M Hyperthreading (able to run 2 programs simultaneously) 

and 64b extension

Core 2 2006 291M P6-like, multicore, no hyperthreading

Core i7 2008 781M Hyperthreading and multicore
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Assembly programmer’s view

Programmer-Visible State

– %eip Program Counter

(%rip in x86-64)

• Address of next instruction

– Register file (8x32bit)

• Heavily used program data

– Condition codes

• Store status information about 

most recent arithmetic operation

• Used for conditional branching

– Floating point register file

%eip
Registers

CPU Memory

Object Code

Program Data

OS Data

Addresses

Data

Instructions

Stack

Condition

Codes

Memory

– Byte addressable array

– Code, user data, (some) OS 

data

– Includes stack used to 

support procedures
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text

text

binary

binary

Compiler (gcc -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries 
(.a)

Turning C into object code

Code in files p1.c p2.c

Compile with command: gcc –O1 p1.c p2.c -o p

– Use level 1 optimizations (-O1); put resulting binary in file p
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Compiling into assembly

int sum(int x, int y)

{

int t = x+y;

return t;

}

Generated assembly

sum:

pushl %ebp

movl %esp, %ebp

movl 12(%ebp), %eax

addl 8(%ebp), %eax

popl %ebp

ret

Obtain with command

gcc –O1 -S code.c

Produces file code.s

C code

Some compilers or optimization 
levels use leave



7

Assembly characteristics

gcc default target architecture: I386 (flat addressing)

Minimal data types
– “Integer” data of 1 (byte), 2 (word), 4 (long) or 8 (quad) bytes

• Data values or addresses

– Floating point data of 4, 8, or 10 bytes

– No aggregate types such as arrays or structures

• Just contiguously allocated bytes in memory

Primitive operations
– Perform arithmetic function on register or memory data

– Transfer data between memory and register

• Load data from memory into register

• Store register data into memory

– Transfer control

• Unconditional jumps to/from procedures

• Conditional branches
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Code for sum

Object code

Assembler

– Translates .s into .o

– Binary encoding of each instruction

– Nearly-complete image of exec code

– Missing linkages between code in different files

0x55 0x89 0xe5 0x8b 0x45 0x0c 

0x03 0x45 0x08 0x5d 0xc3

Obtain with command

gcc –O1 -c code.c

Produces file code.o

Embedded within, the 11-byte 
sequence for sum
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Getting the byte representation

Within gdb debugger

– Once you know the length of sum using the disassembler

– Examine the 24 bytes starting at sum

% gdb code.o

(gdb) x/11xb sum

Object
0x0 <sum>:    0x55 0x89 0xe5 0x8b 0x45 0x0c 0x03 0x45

0x8 <sum+8>:  0x08  0x5d  0xc3
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Machine instruction example

C Code

– Add two signed integers

Assembly

– Add 2 4-byte integers

• “Long” words in GCC parlance

• Same instruction whether signed or 

unsigned

– Operands:

x: Register %eax

y: Memory M[%ebp+8]

t: Register %eax

– Return function value in %eax

Object code

– 3-byte instruction

– Stored at address 0x80483d6

int t = x+y;

addl 8(%ebp),%eax

0x80483d6: 03 45 08

Similar to C expression
x += y
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To generate executable requires linker

– Resolves references bet/ files (One object file must contain main)

– Combines with static run-time libraries (e.g., printf)

– Some libraries are dynamically linked (i.e. at execution)

And now the executable

int main()

{

return sum(1,3);

}

C code
Obtain with command

gcc –O1 –o prog code.o main.c
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Disassembler
– objdump -d prog

– Useful tool for examining object code

– Analyzes bit pattern of series of instructions

– Produces approximate rendition of assembly code

– Can be run on either a.out (complete executable) or .o file

Disassembled

Disassembling object code

080483d0 <sum>:

80483d0:       55                  push   %ebp

80483d1:       89 e5                mov %esp,%ebp

80483d3:       8b 45 0c            mov 0xc(%ebp),%eax

80483d6:       03 45 08            add    0x8(%ebp),%eax

80483d9:       5d                   pop    %ebp

80483da:       c3                ret
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Whose assembler?

Intel/Microsoft Differs from ATT
– Operands listed in opposite order

mov Dest, Src movl Src, Dest

– Constants not preceded by „$‟, Denote hex with „h‟ at end
100h $0x100

– Operand size indicated by operands rather than operator suffix
sub subl

– Addressing format shows effective address computation
[eax*4+100h] $0x100(,%eax,4)

lea eax,[ecx+ecx*2]

sub esp,8

cmp dword ptr [ebp-8],0

mov eax,dword ptr [eax*4+100h]

leal (%ecx,%ecx,2),%eax

subl $8,%esp

cmpl $0,-8(%ebp)

movl $0x100(,%eax,4),%eax

Intel/Microsoft Format ATT Format
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“word” – For Intel, 16b data type due to its origins

– 32b – double word

– 64b – quad words

The overloading of “l” in GAS causes no problems 

since FP involves different operations & registers

Data formats

C decl Intel data type GAS suffix Size (bytes)

char Byte b 1

short Word w 2

int, unsigned, 

long int, 

unsigned long, 

char *

Double word l 4

float Single precision s 4

double Double precision l 8

long double Extended precision t 10/12
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Accessing information

8 32bit registers

Six of them mostly for 

general purpose

Last two point to key data in 

a process stack

Two low-order bytes of the first 

4 can be access directly 

(low-order 16bit as well); partially

for backward compatibility

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax %ah %al

%cx %ch %cl

%dx %dh %dl

%bx %bh %bl

%si

%di

%sp

%bp

15 0831 7

Stack pointer

Frame pointer
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Operand specifiers

Most instructions have 1 or 2 operands

– Source: constant or read from register or memory

– Destination: register or memory

– Types:

• Immediate – constant, denoted with a “$” in front (e.g. $-57, $0x1F)

• Register – either 8 or 16 or 32bit registers

• Memory – location given by an effective address

Operand forms – last is the most general

– s, scale factor, must be 1, 2, 4 or 8

– Other memory forms are cases of it

• Absolute - M[Imm]; Based + displacement: M[Imm + R[Eb]]

Type Form Operand value Name

Immediate $Imm Imm Immediate

Register Ea R[Ea] Register

Memory Imm (Eb, Ei, s) M[Imm + R[Eb]+R[Ei]*s] Absolute, Indirect, Based + 

displacement, Indexed, Scale 

indexed



Practice problem

Address Value

0x100 0xFF

0x104 0xAB

0x108 0x13

0x10C 0x11

17

Register Value

%eax 0x100

%ecx 0x1

%edx 0x3

Operand Form Value

%eax

0x104

$0x108

(%eax)

4(%eax)

9(%eax,%edx)

260(%ecx,%edx)

0xFC(,%ecx,4)

(%eax,%edx,4)

R[%eax]

M[0x104]

0x108

M[R[%eax]]

M[4 + R[%eax]]

M[9 + R[%eax] + R[%edx]]

M[260 + R[%ecx] + R[%edx]]

M[0xFC + R[%ecx]*4]

M[R[%eax]+ R[%edx]*4]

0x100

0xAB

0x108

0xFF

0xAB

0x11

0x13

0xFF

0x11
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Moving data

Among the most common instructions

e.g.
movl $0x4050, %eax Immediate to register

movw %bp, %sp Register to register

movb (%edi, %ecx), %ah Memory to register

Instruction Effect Description

mov{l,w,b} S,D D ← S Move double word, word or byte

movs{bw,bl,wl} S,D D ← SignExtend(S) Move sign-extended byte to word, to 

double-word and word to double-word

movz{bw,bl,wl} S,D D ← ZeroExtend(S) Move zero-extended byte to word, to 

double-word and word to double-word

pushl S R[%esp] ← R[%esp] – 4;

M[R[%esp]] ← S

Push S onto the stack

popl S D ← M[R[%esp]]

R[%esp] ← R[%esp] + 4;

Pop S from the stack



Stack “top”
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Moving data

Note the differences between movb, movsbl and movzbl

Assume %dh = CD, %eax = 98765432

movb %dh,%al

movsbl %dh,%eax

movzbl %dh,%eax

Last two work with the stack

%eax = 0x123, %esp = 0x108

pushl %ebp

subl $4, %esp

movl %ebp, (%esp)

Since stack is part of program mem, you can really access any 

part of it using standard memory addressing

%eax = 987654CD

%eax = FFFFFFCD

%eax = 000000CD

Stack “bottom”

0x108

0x123

Stack “top”
0x104
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movl operand combinations

movl

Imm

Reg

Mem

Reg

Mem

Reg

Mem

Reg

Source Destination

movl $0x4,%eax

movl $-147,(%eax)

movl %eax,%edx

movl %eax,(%edx)

movl (%eax),%edx

C Analog

temp = 0x4;

*p = -147;

temp2 = temp1;

*p = temp;

temp = *p;

IA32 restriction – cannot move between two memory 

locations with one instruction
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Using simple addressing modes

void swap(int *xp, int *yp) 

{

int t0 = *xp;

int t1 = *yp;

*xp = t1;

*yp = t0;

}

swap:

pushl %ebp

movl %esp,%ebp

pushl %ebx

movl 8(%ebp),%edx

movl 12(%ebp),%ecx

movl (%ecx),%eax

movl (%edx),%ebx

movl %eax,(%edx)

movl %ebx,(%ecx)

popl %ebx

leave

ret

Body

Stack

set up

Finish

Read value stored in 

location xp and store it in t0

Declares xp as being 

a pointer to an int

xp at %ebp+8, yp at %ebp+12
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Understanding swap

void swap(int *xp, int *yp) 

{

int t0 = *xp;

int t1 = *yp;

*xp = t1;

*yp = t0;

}

Register Variable

%ecx yp

%edx xp

%eax t1

%ebx t0

movl 12(%ebp),%ecx # ecx = yp

movl 8(%ebp),%edx # edx = xp

movl (%ecx),%eax # eax = *yp (t1)

movl (%edx),%ebx # ebx = *xp (t0)

movl %eax,(%edx) # *xp = eax

movl %ebx,(%ecx) # *yp = ebx 

0x120

0x124

Rtn adr

%ebp 0 

4 

8 

12 

Offset

-4 

123

456

Address

0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

Old %ebp

Old %ebx
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Understanding swap

movl 12(%ebp),%ecx # ecx = yp

movl 8(%ebp),%edx # edx = xp

movl (%ecx),%eax # eax = *yp (t1)

movl (%edx),%ebx # ebx = *xp (t0)

movl %eax,(%edx) # *xp = eax

movl %ebx,(%ecx) # *yp = ebx 

0x120

0x124

Rtn adr

%ebp 0 

4 

8 

12 

Offset

-4 

123

456

Address

0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp 0x104
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Understanding swap

movl 12(%ebp),%ecx # ecx = yp

movl 8(%ebp),%edx # edx = xp

movl (%ecx),%eax # eax = *yp (t1)

movl (%edx),%ebx # ebx = *xp (t0)

movl %eax,(%edx) # *xp = eax

movl %ebx,(%ecx) # *yp = ebx 

0x120

0x124

Rtn adr

%ebp 0 

4 

8 

12 

Offset

-4 

123

456

Address

0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x120

0x104
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Understanding swap

movl 12(%ebp),%ecx # ecx = yp

movl 8(%ebp),%edx # edx = xp

movl (%ecx),%eax # eax = *yp (t1)

movl (%edx),%ebx # ebx = *xp (t0)

movl %eax,(%edx) # *xp = eax

movl %ebx,(%ecx) # *yp = ebx 

0x120

0x124

Rtn adr

%ebp 0 

4 

8 

12 

Offset

-4 

123

456

Address

0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x124

0x120

0x104
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Understanding swap

movl 12(%ebp),%ecx # ecx = yp

movl 8(%ebp),%edx # edx = xp

movl (%ecx),%eax # eax = *yp (t1)

movl (%edx),%ebx # ebx = *xp (t0)

movl %eax,(%edx) # *xp = eax

movl %ebx,(%ecx) # *yp = ebx 

0x120

0x124

Rtn adr

%ebp 0 

4 

8 

12 

Offset

-4 

123

456

Address

0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456

0x124

0x120

0x104
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Understanding swap

movl 12(%ebp),%ecx # ecx = yp

movl 8(%ebp),%edx # edx = xp

movl (%ecx),%eax # eax = *yp (t1)

movl (%edx),%ebx # ebx = *xp (t0)

movl %eax,(%edx) # *xp = eax

movl %ebx,(%ecx) # *yp = ebx 

0x120

0x124

Rtn adr

%ebp 0 

4 

8 

12 

Offset

-4 

123

456

Address

0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456

0x124

0x120

123

0x104
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Understanding swap

movl 12(%ebp),%ecx # ecx = yp

movl 8(%ebp),%edx # edx = xp

movl (%ecx),%eax # eax = *yp (t1)

movl (%edx),%ebx # ebx = *xp (t0)

movl %eax,(%edx) # *xp = eax

movl %ebx,(%ecx) # *yp = ebx 

0x120

0x124

Rtn adr

%ebp 0 

4 

8 

12 

Offset

-4 

456

456

Address

0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456

0x124

0x120

123

0x104
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Understanding swap

movl 12(%ebp),%ecx # ecx = yp

movl 8(%ebp),%edx # edx = xp

movl (%ecx),%eax # eax = *yp (t1)

movl (%edx),%ebx # ebx = *xp (t0)

movl %eax,(%edx) # *xp = eax

movl %ebx,(%ecx) # *yp = ebx

0x120

0x124

Rtn adr

%ebp 0 

4 

8 

12 

Offset

-4 

456

123

Address

0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456

0x124

0x120

123

0x104
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A second example

movl 8(%ebp),%edi

movl 12(%ebp),%edx

movl 16(%ebp),%ecx

movl (%edx),%ebx

movl (%ecx),%esi

movl (%edi),%eax

movl %eax,(%edx)

movl %ebx,(%ecx)

movl %esi,(%edi)

void decode1(int *xp, int *yp, int *zp);

xp at %ebp+8, yp at %ebp+12, zp at %ebp+16

void decode(int *xp, 

int *yp, 

int *zp) 

{

int tx = *xp;

int ty = *yp;

int tz = *zp;

*yp = tx;

*zp = ty;

*xp = tz;

}

Get xp

Get yp

Get zp

Get y

Get z 

Get x

Store x at yp

Store y at zp

Store z at xp
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Address computation instruction

leal S,D D ← &S

– leal = Load Effective Address

– S is address mode expression

– Set D to address denoted by expression

Uses

– Computing address w/o doing memory reference

• E.g., translation of p = &x[i];

– Computing arithmetic expressions of form x + k*y

k = 1, 2, 4, or 8.

leal 7(%edx,%edx,4), %eax

– when %edx=x, %eax becomes 5x+7
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Some arithmetic operations

Instruction Effect Description

incl D D ← D + 1 Increment

decl D D ← D – 1 Decrement

negl D D ← -D Negate

notl D D ← ~D Complement

One operand instructions
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Some arithmetic operations

Instruction Effect Description

addl S,D D ← D + S Add

subl S,D D ← D – S Substract

imull S,D D ← D * S Multiply

xorl S,D D ← D ^ S Exclusive or

orl S,D D ← D | S Or

andl S,D D ← D & S And

Two operand instructions

Shifts

Instruction Effect Description

sall k,D D ← D << k Left shift

shll k,D D ← D << k Left shift (same as sall)

sarl k,D D ← D >> k Arithmetic right shift

shrl k,D D ← D >> k Logical right shift
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Using leal for arithmetic expressions

int arith

(int x, int y, int z)

{

int t1 = x+y;

int t2 = z+t1;

int t3 = x+4;

int t4 = y * 48; 

int t5 = t3 + t4;

int rval = t2 * t5;

return rval;

}

arith:

pushl %ebp

movl %esp,%ebp

movl 8(%ebp),%eax

movl 12(%ebp),%edx

leal (%edx,%eax),%ecx

leal (%edx,%edx,2),%edx

sall $4,%edx

addl 16(%ebp),%ecx

leal 4(%edx,%eax),%eax

imull %ecx,%eax

leave

ret

Body

Set

Up

Finish
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Understanding arith

int arith

(int x, int y, int z)

{

int t1 = x+y;

int t2 = z+t1;

int t3 = x+4;

int t4 = y * 48; 

int t5 = t3 + t4;

int rval = t2 * t5;

return rval;

}

movl 8(%ebp),%eax # eax = x

movl 12(%ebp),%edx # edx = y

leal (%edx,%eax),%ecx # ecx = x+y (t1)

leal (%edx,%edx,2),%edx # edx = 3*y

sall $4,%edx # edx = 48*y (t4)

addl 16(%ebp),%ecx # ecx = z+t1 (t2)

leal 4(%edx,%eax),%eax # eax = 4+t4+x (t5)

imull %ecx,%eax # eax = t5*t2 (rval)

y

x

Rtn adr

Old %ebp %ebp0 

4 

8 

12 

Offset
Stack

•

•
•

z16 
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Another example

int logical(int x, int y)

{

int t1 = x^y;

int t2 = t1 >> 17;

int mask = (1<<13) - 7;

int rval = t2 & mask;

return rval;

}

logical:

pushl %ebp

movl %esp,%ebp

movl 12(%ebp),%eax

xorl 8(%ebp),%eax

sarl $17,%eax

andl $8185,%eax

leave

ret

Body

Set Up

Finish

movl 8(%ebp),%eax eax = x

xorl 12(%ebp),%eax eax = x^y (t1)

sarl $17,%eax eax = t1>>17 (t2)

andl $8185,%eax eax = t2 & 8185

mask 213 = 8192, 213 – 7 = 8185
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CISC Properties 

Instruction can reference different operand types

– Immediate, register, memory

Arithmetic operations can read/write memory

Memory reference can involve complex computation

– Rb + S*Ri + D

– Useful for arithmetic expressions, too

Instructions can have varying lengths

– IA32 instructions can range from 1 to 15 bytes



Next time …

Breaking with the sequence … control

– Condition codes

– Conditional branches

– Loops

– Switch

38


