Floating point

Today

- IEEE Floating Point Standard
- Rounding
- Floating Point Operations
- Mathematical properties

Next time

- The machine model

IEEE Floating point

- Floating point representations
- Encodes rational numbers of the form $\mathrm{V}=\mathrm{x}^{*}\left(2^{y}\right)$
- Useful for very large numbers or numbers close to zero
- IEEE Standard 754 (IEEE floating point)
- Established in 1985 as uniform standard for floating point arithmetic (started as an Intel's sponsored effort)
- Before that, many idiosyncratic formats
- Supported by all major CPUs
- Driven by numerical concerns
- Nice standards for rounding, overflow, underflow
- Hard to make go fast
- Numerical analysts predominated over hardware types in defining standard

Fractional binary numbers

- Representation
- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$
\sum_{k=-j}^{i} b_{k} \cdot 2^{k}
$$

2^{i}

$$
\begin{array}{llllllllll}
b_{i} & b_{i-1} & \cdots & b_{2} & b_{1} & b_{0} & b_{-1} & b_{-2} & b_{-3} & \cdots
\end{array} b_{-j}
$$

Fractional binary number examples

- Value Representation
- ???? 101.11_{2}
- ???? 10.111_{2}
- ???? 0.111111_{2}
- Observations
- Divide by 2 by shifting right (the point moves to the left)
- Multiply by 2 by shifting left (the point moves to the right)
- Numbers of form 0.111111...2 represent those just below 1.0
- $1 / 2+1 / 4+1 / 8+\ldots+1 / 2^{i}+\ldots \rightarrow 1.0$
- We use notation $1.0-\varepsilon$ to represent them

Representable numbers

- Limitation
- Can only exactly represent numbers of the form $x / 2^{\mathrm{k}}$
- Other numbers have repeating bit representations
- Value Representation
- $1 / 3 \quad 0.0101010101[01] \ldots 2$
- $1 / 5 \quad 0.001100110011[0011] \ldots 2$
$-1 / 10 \quad 0.0001100110011[0011] \ldots 2$

Floating point representation

- Numerical form
$-V=(-1)^{*} M^{*} 2^{E}$
- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
- MSB is sign bit
- exp field encodes E (note: encode != is)
- frac field encodes M

s	\exp	frac

Floating point precisions

- Encoding

- Sign bit; exp (encodes E): k-bit; frac (encodes M): n-bit
- Sizes
- Single precision: $\mathrm{k}=8$ exp bits, $\mathrm{n}=23$ frac bits
- 32 bits total
- Double precision: $\mathrm{k}=11$ exp bits, $\mathrm{n}=52$ frac bits
- 64 bits total
- Extended precision: $\mathrm{k}=15$ exp bits, $\mathrm{n}=63$ frac bits
- Only found in Intel-compatible machines
- Stored in 80 bits
- 1 bit wasted
- Value encoded - three different cases, depending on value of exp

Normalized numeric values

- Condition
$-\exp \neq 000 \ldots 0$ and $\exp \neq 111 \ldots 1$
- Exponent coded as biased value
- E = Exp-Bias
- Exp : unsigned value denoted by exp
- Bias: Bias value
- Single precision: 127 (Exp: 1...254, E: -126...127)
- Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- in general: Bias $=2^{k-1}-1$, where k is number of exponent bits
- Significand coded with implied leading 1
$-M=1 . x x x \ldots x_{2}\left(1+f \& f=0 . x^{\prime} x_{2}\right)$
- xxx...x: bits of frac
- Minimum when 000... 0 ($\mathrm{M}=1.0$)
- Maximum when 111... 1 ($\mathrm{M}=2.0-\varepsilon$)
- Get extra leading bit for "free"

Normalized encoding example

- Value
- Float $F=15213.0$;
$-15213_{10}=11101101101101_{2}=1.1101101101101_{2} \times 2^{13}$
- Significand
- $\mathrm{M}=1.1101101101101_{2}$
- $\mathrm{frac}=11011011011010000000000$
- Exponent
- E = 13
- Bias = 127
$-\exp =\mathrm{E}+$ Bias $=140=10001100_{2}$
Floating Point Representation:

```
Hex: }
Binary: 0100 0110 0110 1101 1011 0100 0000 0000
140: 100 0110 0
15213:
    110 1101 1011 01
```


Denormalized values

- Condition
$-\exp =000 \ldots 0$
- Value
- Exponent value $\mathrm{E}=1$ - Bias
- Note: not simply E=-Bias
- Significand value $M=0 . x x x \ldots x_{2}$ (0.f)
- xxx...x: bits of frac
- Cases
$-\exp =000 \ldots 0$, frac $=000 \ldots 0$
- Represents value 0
- Note that have distinct values +0 and -0
- exp $=000 \ldots 0$, frac $\neq 000 \ldots 0$
- Numbers very close to 0.0

Special values

- Condition
$-\exp =111 . .1$
- Cases
- exp = 111...1, frac $=000 \ldots 0$
- Represents value ∞ (infinity)
- Operation that overflows
- Both positive and negative
- E.g., 1.0/0.0 = -1.0/-0.0 $=+\infty, 1.0 /-0.0=-\infty$
$-\exp =111 \ldots 1$, frac $\neq 000 \ldots 0$
- Not-a-Number (NaN)
- Represents case when no numeric value can be determined
- E.g., $\sqrt{-1},(\infty-\infty)$

Summary of FP real number encodings

$$
-0 \quad+0
$$

${ }^{\mathrm{NaN}}$

Tiny floating point example

- 8-bit Floating Point Representation
- the sign bit is in the most significant bit.
- the next four (k) bits are the exponent, with a bias of $7\left(2^{k-1}-1\right)$
- the last three (n) bits are the frac
- Same General Form as IEEE Format
- normalized, denormalized
- representation of $0, \mathrm{NaN}$, infinity

Values related to the exponent

	Exp	exp	E	$2^{\text {E }}$	
Normalized	0	0000	-6	$1 / 64$	(denorms)
E = - Bias	1	0001	-6	$1 / 64$	
	2	0010	-5	$1 / 32$	
Denormalized	3	0011	-4	$1 / 16$	
E=1-Bias	5	0100	-3	$1 / 8$	
	6	0101	-2	$1 / 4$	
	7	0110	-1	$1 / 2$	
	8	1000	+1	2	
	9	1001	+2	4	
	10	1010	+3	8	
	11	1011	+4	16	
	12	1100	+5	32	
	13	1101	+6	64	
	14	1110	+7	128	(inf, NaN)

Dynamic range

	s exp frac	E	Value			
	0	0000	000	-6	0	
	0	0000	001	-6	$1 / 8 * 1 / 64$	$=1 / 512$

Distribution of values

- 6-bit IEEE-like format
- e = 3 exponent bits
- $f=2$ fraction bits
- Bias is 3
- Notice how the distribution gets denser toward zero.

Distribution of values (close-up view)

- 6-bit IEEE-like format
$-\mathrm{e}=3$ exponent bits
$-f=2$ fraction bits
- Bias is 3
- Note: Smooth transition between normalized and denormalized numbers due to definition $\mathrm{E}=1$ - Bias for denormalized values

Interesting numbers

Description
Zero
Smallest Pos. Denorm.

- Single ~ 1.4×10^{-45}
- Double ~ 4.9×10^{-324}

Largest Denormalized

- Single ~ 1.18×10^{-38}
- Double ~ 2.2×10^{-308}

Smallest Pos. Normalized 00... $01 \quad 00 . . .00 \quad 1.0 \times 2^{-\{126,1022\}}$

- Just larger than largest denormalized

One
Largest Normalized

- Single ~ 3.4×10^{38}
- Double ~ 1.8×10^{308}

exp frac Numeric Value

00... 00 00... 00 0.0
$00 \ldots 0000 \ldots 012^{-\{23,52\}} \times 2^{-\{126,1022\}}$
$00 \ldots 00 \quad 11 \ldots 11(1.0-\varepsilon) \times 2^{-\{126,1022\}}$

Floating point operations

- Conceptual view
- First compute exact result
- Make it fit into desired precision
- Possibly overflow if exponent too large
- Possibly round to fit into frac
- Rounding modes (illustrate with \$ rounding)

	$\$ 1.40$	$\$ 1.60$	$\$ 1.50$	$\$ 2.50$	$-\$ 1.50$
Zero	$\$ 1$	$\$ 1$	$\$ 1$	$\$ 2$	$-\$ 1$
Round down $(-\infty)$	$\$ 1$	$\$ 1$	$\$ 1$	$\$ 2$	$-\$ 2$
Round up $(+\infty)$	$\$ 2$	$\$ 2$	$\$ 2$	$\$ 3$	$-\$ 1$
Nearest Even (default)	$\$ 1$	$\$ 2$	$\$ 2$	$\$ 2$	$-\$ 2$

Note:

1. Round down: rounded result is close to but no greater than true result.
2. Round up: rounded result is close to but no less than true result.

Closer look at round-to-even

- Default rounding mode
- All others are statistically biased
- Sum of set of positive numbers will consistently be overor under- estimated
- Applying to other decimal places / bit positions
- When exactly halfway between two possible values
- Round so that least significant digit is even
- E.g., round to nearest hundredth
- $1.2349999 \quad 1.23$ (Less than half way)
- $1.2350001 \quad 1.24$ (Greater than half way)
- $1.2350000 \quad 1.24$ (Half way—round up)
- 1.24500001 .24 (Half way—round down)

Rounding binary numbers

- Binary fractional numbers
- "Even" when least significant bit is 0
- Half way when bits to right of rounding position $=100 \ldots 2$
- Examples
- Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded Value
$23 / 32 \quad 10.00011_{2} \quad 10.00_{2} \quad(<1 / 2-d o w n) \quad 2$
$23 / 16 \quad 10.00110_{2} \quad 10.01_{2} \quad$ ($>1 / 2-u p$) $\quad 21 / 4$
2 7/8
2 5/8
$10.11100_{2} 11.00_{2}$
(1/2-up)
3
$10.10100_{2} 10.10_{2}$
(1/2-down)
$21 / 2$

FP multiplication

- Operands
$-(-1)^{s 1} \mathrm{M}^{1} 2^{\mathrm{E} 1} \quad * \quad(-1)^{\mathrm{s} 2} \mathrm{M}^{2} 2^{\mathrm{E} 2}$
- Exact result
$-(-1)^{\mathrm{s}} \mathrm{M} 2^{\mathrm{E}}$
- Sign s: s1 ^ s2
- Significand M: M1 * M2
- Exponent E: E1 + E2
- Fixing
- If $M \geq 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision
- Implementation
- Biggest chore is multiplying significands

FP addition

- Operands
- (-1)s1 M1 2E1
- (-1)s2 M2 2E2
- Assume E1 > E2
- Exact Result
- (-1)s M 2E
- Sign s, significand M :

- Result of signed align \& add
- Exponent E: E1
- Fixing
- If $M \geq 2$, shift M right, increment E
- if $M<1$, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

Mathematical properties of FP add

- Compare to those of Abelian Group
- Closed under addition? YES
- But may generate infinity or NaN
- Commutative? YES
- Associative? NO
- Overflow and inexactness of rounding
- (3.14+1e10)-1e10=0 (rounding)
- 3.14+(1e10-1e10)=3.14
- 0 is additive identity? YES
- Every element has additive inverse ALMOST
- Except for infinities \& NaNs
- Monotonicity
$-a \geq b \Rightarrow a+c \geq b+c$? ALMOST
- Except for NaNs

Math. properties of FP multiplication

- Compare to commutative ring
- Closed under multiplication? YES
- But may generate infinity or NaN
- Multiplication Commutative?

YES

- Multiplication is Associative? NO
- Possibility of overflow, inexactness of rounding
- 1 is multiplicative identity? YES
- Multiplication distributes over addition? NO
- Possibility of overflow, inexactness of rounding
- Monotonicity
$-\mathrm{a} \geq \mathrm{b} \& \mathrm{c} \geq 0 \Rightarrow \mathrm{a} * \mathrm{c} \geq \mathrm{b} * \mathrm{c}$? ALMOST
- Except for NaNs

Floating point in C

- C guarantees two levels
- float single precision
- double double precision
- Conversions
- int \rightarrow float : maybe rounded
- int \rightarrow double : exact value preserved (double has greater range and higher precision)
- float \rightarrow double : exact value preserved (double has greater range and higher precision)
- double \rightarrow float : may overflow or be rounded
- double \rightarrow int : truncated toward zero (-1.999 $\rightarrow-1$)
- float \rightarrow int : truncated toward zero

Floating point puzzles

- For each of the following C expressions, either:
- Argue that it is true for all argument values
- Explain why not true

$\begin{aligned} & \text { int } x=\ldots ; \\ & \text { float } f=\ldots ; \\ & \text { double } d=\ldots \text {; } \end{aligned}$	- $x==$ (int) (float) x - $d==$ (double) (float) d - $f==$ (float) (double) f	$\begin{aligned} & \text { No }(x=\text { TMax }) \\ & \text { No }(d=1 e 40) \\ & \text { Yes } \end{aligned}$
	- $£==-(-f)$;	Yes
Assume neither d nor f is NaN	$\begin{aligned} & \text { - } 1.0 / 2==1 / 2.0 \\ & \text { - } d * d>=0.0 \end{aligned}$	```Yes Yes (may overflow)```
	- $(\mathrm{f}+\mathrm{d})-\mathrm{f}==\mathrm{d}$	```No (f = 1.0e20, d = 1.0; f+d rounded to 1.0e20```

Summary

- IEEE Floating point has clear mathematical properties
- Represents numbers of form M X 2E
- Not the same as real arithmetic
- Violates associativity/distributivity
- Makes life difficult for compilers \& serious numerical applications programmers

