Floating point

Today

- IEEE Floating Point Standard
- Rounding
- Floating Point Operations
- Mathematical properties

Next time

The machine model

IEEE Floating point

- Floating point representations
 - Encodes rational numbers of the form $V=x^*(2^y)$
 - Useful for very large numbers or numbers close to zero
- IEEE Standard 754 (IEEE floating point)
 - Established in 1985 as uniform standard for floating point arithmetic (started as an Intel's sponsored effort)
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make go fast
 - Numerical analysts predominated over hardware types in defining standard

Fractional binary numbers

- Representation
 - Bits to right of "binary point" represent fractional powers of 2
 - Represents rational number:

Fractional binary number examples

Value Representation

```
- ???? 101.11<sub>2</sub>
- ???? 10.111<sub>2</sub>
- ???? 0.111111<sub>2</sub>
```

Observations

- Divide by 2 by shifting right (the point moves to the left)
- Multiply by 2 by shifting left (the point moves to the right)
- Numbers of form 0.1111111...2 represent those just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - We use notation 1.0ε to represent them

Representable numbers

Limitation

- Can only exactly represent numbers of the form x/2^k
- Other numbers have repeating bit representations

```
    Value Representation
    – 1/3
    0.0101010101[01]...<sub>2</sub>
```

- 1/5 0.001100110011[0011]...₂
- 1/10 0.0001100110011[0011]...₂

Floating point representation

Numerical form

- $V = (-1)^s * M * 2^E$
 - Sign bit s determines whether number is negative or positive
 - Significand M normally a fractional value in range [1.0,2.0).
 - Exponent E weights value by power of two

Encoding

- MSB is sign bit
- exp field encodes E (note: encode != is)
- frac field encodes M

Floating point precisions

Encoding

s exp frac

- Sign bit; exp (encodes E): k-bit; frac (encodes M): n-bit
- Sizes
 - Single precision: k = 8 exp bits, n= 23 frac bits
 - 32 bits total
 - Double precision: k = 11 exp bits, n = 52 frac bits
 - 64 bits total
 - Extended precision: k = 15 exp bits, n = 63 frac bits
 - Only found in Intel-compatible machines
 - Stored in 80 bits
 - 1 bit wasted
- Value encoded three different cases, depending on value of exp

Normalized numeric values

- Condition
 - $-\exp \neq 000...0$ and $\exp \neq 111...1$
- Exponent coded as biased value
 - E = Exp Bias
 - Exp: unsigned value denoted by exp
 - Bias: Bias value
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
 - in general: Bias = 2^{k-1} 1, where k is number of exponent bits
- Significand coded with implied leading 1
 - $M = 1.xxx...x_2 (1+f & f = 0.xxx_2)$
 - xxx...x: bits of frac
 - Minimum when 000...0 (M = 1.0)
 - Maximum when 111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

Normalized encoding example

Value

- Float F = 15213.0;
- $-15213_{10} = 11101101101101_2 = 1.1101101101101_2 \times 2^{13}$

Significand

- $M = 1.1101101101101_2$
- frac = 11011011011010000000000

Exponent

- E = 13
- Bias = 127
- $\exp = E + Bias = 140 = 10001100_2$

Floating Point Representation:

140: 100 0110 0

15213: 110 1101 1011 01

Denormalized values

- Condition
 - $\exp = 000...0$
- Value
 - Exponent value E = 1 Bias
 - Note: not simply E= Bias
 - Significand value $M = 0.xxx...x_2$ (0.*f*)
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents value 0
 - Note that have distinct values +0 and -0
 - $\exp = 000...0$, frac $\neq 000...0$
 - Numbers very close to 0.0

Special values

- Condition
 - $\exp = 111...1$
- Cases
 - $\exp = 111...1$, frac = 000...0
 - Represents value ∞(infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
 - $\exp = 111...1$, frac $\neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., $\sqrt{-1}$, $(\infty \infty)$

Summary of FP real number encodings

Tiny floating point example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit.
 - the next four (k) bits are the exponent, with a bias of 7 $(2^{k-1}-1)$
 - the last three (n) bits are the frac
- Same General Form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

7	6 3	2 0
S	exp	frac

Values related to the exponent

	Ехр	exp	E	2 ^E	
	0	0000	-6	1/64	(denorms)
Normalized	1	0001	-6	1/64	
E = e - Bias	2	0010	-5	1/32	
	3	0011	-4	1/16	
	4	0100	-3	1/8	
Denormalized	5	0101	-2	1/4	
E = 1 - Bias	6	0110	-1	1/2	
	7	0111	0	1	
	8	1000	+1	2	
	9	1001	+2	4	
	10	1010	+3	8	
	11	1011	+4	16	
	12	1100	+5	32	
	13	1101	+6	64	
	14	1110	+7	128	
	15	1111	n/a		(inf, NaN)

Dynamic range

	s	exp	frac	E	Value	
		0000		-6	0	ı
	0	0000	001	-6	1/8*1/64 = 1/512 closest to zero	
Denormalized	0	0000	010	-6	2/8*1/64 = 2/512	ı
numbers	0	0000	110	-6	6/8*1/64 = 6/512	
	0	0000	111	-6	7/8*1/64 = 7/512 largest denorm	
	0	0001	000	-6	8/8*1/64 = 8/512 smallest norm	
	0	0001	001	-6	9/8*1/64 = 9/512	
	0	0110	110	-1	14/8*1/2 = 14/16	
	0	0110	111	-1	15/8*1/2 = 15/16 closest to 1 below	
	0	0111	000	0	8/8*1 = 1	
Normalized	0	0111	001	0	9/8*1 = 9/8 closest to 1 above	
numbers	0	0111	010	0	10/8*1 = 10/8	
	•••					
	0	1110	110	7	14/8*128 = 224	
	0		111	7	15/8*128 = 240 largest norm	
	0	77777	000	n/a	inf	

Distribution of values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3
- Notice how the distribution gets denser toward zero.

Distribution of values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3
- Note: Smooth transition between normalized and denormalized numbers due to definition E = 1 - Bias for denormalized values

Interesting numbers

Description	exp	frac	Numeric Value
Zero	0000	0000	0.0
Smallest Pos. Denorm.	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$
 Single ~ 1.4 X 10⁻⁴⁵ 			
 Double ~ 4.9 X 10⁻³²⁴ 			
Largest Denormalized	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
• Single ~ 1.18 X 10 ⁻³⁸			
 Double ~ 2.2 X 10⁻³⁰⁸ 			
Smallest Pos. Normalized	0001	0000	1.0 X 2 ^{-{126,1022}}
 Just larger than larges 	t denorma	alized	
One	0111	0000	1.0
Largest Normalized	1110	1111	$(2.0 - \epsilon) \times 2^{\{127,1023\}}$
 Single ~ 3.4 X 10³⁸ 			
 Double ~ 1.8 X 10³⁰⁸ 			

Floating point operations

- Conceptual view
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac
- Rounding modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	- \$1.50
Zero	\$1	\$1	\$1	\$2	- \$1
Round down (-∞)	\$1	\$1	\$1	\$2	- \$2
Round up (+∞)	\$2	\$2	\$2	\$3	- \$1
Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

Note:

- 1. Round down: rounded result is close to but no greater than true result.
- 2. Round up: rounded result is close to but no less than true result.

Closer look at round-to-even

- Default rounding mode
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be overor under- estimated
- Applying to other decimal places / bit positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth

```
1.2349999 1.23 (Less than half way)
1.2350001 1.24 (Greater than half way)
```

• 1.2350000 1.24 (Half way—round up)

• 1.2450000 1.24 (Half way—round down)

Rounding binary numbers

- Binary fractional numbers
 - "Even" when least significant bit is 0
 - Half way when bits to right of rounding position = $100..._2$

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.00011 ₂	10.00 ₂	(<1/2—down)	2
2 3/16	10.00110 ₂	10.01 ₂	(>1/2—up)	2 1/4
2 7/8	10.11100 ₂	11.00 ₂	(1/2—up)	3
2 5/8	10.10100 ₂	10.10 ₂	(1/2—down)	2 1/2

FP multiplication

Operands

 $- (-1)^{s1} M^1 2^{E1}$ * $(-1)^{s2} M^2 2^{E2}$

Exact result

 $- (-1)^{s} M 2^{E}$

- Sign s: s1 ^ s2

Significand M: M1 * M2

– Exponent E: E1 + E2

Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision
- Implementation
 - Biggest chore is multiplying significands

FP addition

Operands

- (-1)s1 M1 2E1
- (-1)s2 M2 2E2
- Assume E1 > E2

Exact Result

- (-1)s M 2E
- Sign s, significand M:
 - Result of signed align & add
- Exponent E: E1

Fixing

- If M ≥ 2, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

Mathematical properties of FP add

- Compare to those of Abelian Group
 - Closed under addition? YES
 - But may generate infinity or NaN
 - Commutative? YES
 - Associative? NO
 - Overflow and inexactness of rounding
 - (3.14+1e10)-1e10=0 (rounding)
 - -3.14+(1e10-1e10)=3.14
 - 0 is additive identity? YES
 - Every element has additive inverse ALMOST
 - Except for infinities & NaNs
- Monotonicity
 - a ≥ b \Rightarrow a+c ≥ b+c? ALMOST
 - Except for NaNs

Math. properties of FP multiplication

- Compare to commutative ring
 - Closed under multiplication? YES
 - But may generate infinity or NaN
 - Multiplication Commutative? YES
 - Multiplication is Associative? NO
 - · Possibility of overflow, inexactness of rounding
 - 1 is multiplicative identity? YES
 - Multiplication distributes over addition?
 - Possibility of overflow, inexactness of rounding
- Monotonicity
 - $a \ge b \& c \ge 0 \Rightarrow a *c \ge b *c?$ ALMOST
 - Except for NaNs

Floating point in C

- C guarantees two levels
 - float single precision
 - double double precision

Conversions

- int → float : maybe rounded
- int → double : exact value preserved (double has greater range and higher precision)
- float → double : exact value preserved (double has greater range and higher precision)
- double → float : may overflow or be rounded
- double → int : truncated toward zero (-1.999 \rightarrow -1)
- float → int : truncated toward zero

Floating point puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values

(f+d)-f == d

Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

```
Yes
• x == (int) (double) x
• x == (int) (float) x • No (x = TMax)
• d == (double) (float) d • No (d = 1e40)
• f == (float) (double) f • Yes
• f == -(-f);
                           Yes
                         • Yes
• 1.0/2 == 1/2.0
• d*d >= 0.0
                          • Yes (may overflow)
                         • No (f = 1.0e20,
```

d = 1.0;

1.0e20

f+d rounded to

Summary

- IEEE Floating point has clear mathematical properties
 - Represents numbers of form M X 2E
 - Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers