Floating point

Today

» [EEE Floating Point Standard
» Rounding

» Floating Point Operations

» Mathematical properties
Next time

» The machine model

Fabian E. Bustamante, Spring 2010

IEEE Floating point

» Floating point representations
— Encodes rational numbers of the form V=x*(2Y)
— Useful for very large numbers or numbers close to zero

» |EEE Standard 754 (IEEE floating point)

— Established in 1985 as uniform standard for floating point
arithmetic (started as an Intel’s sponsored effort)

« Before that, many idiosyncratic formats
— Supported by all major CPUs

» Driven by numerical concerns
— Nice standards for rounding, overflow, underflow

— Hard to make go fast

* Numerical analysts predominated over hardware types in
defining standard

Fractional binary numbers

* Representation
— Bits to right of “binary point” represent fractional powers of 2
— Represents rational number: i
k
2. b2
k=—j

21'
21'71

b, b, e b, b by.b,b,b, e+ b

1/2 —'AI
/8

1/4
1

27

Fractional binary number examples

» Value Representation
- 27??? 101.11,
— 27977 10.111,
— 2777 0.111111,
* Observations
— Divide by 2 by shifting right (the point moves to the left)

— Multiply by 2 by shifting left (the point moves to the right)

— Numbers of form 0.111111..., represent those just below 1.0
« 1/2+1/4+1/8+...+1/2+...>51.0
* We use notation 1.0 — € to represent them

Representable numbers

* Limitation
— Can only exactly represent numbers of the form x/2
— Other numbers have repeating bit representations

* Value Representation
— 1/3 0.0101010101[01]...,
— 1/5 0.001100110011[0011]...,

— 1/10 0.0001100110011[0011]...,

Floating point representation

* Numerical form
— V=(-1)s*M*2F
« Sign bit s determines whether number is negative or positive
« Significand M normally a fractional value in range [1.0,2.0).
« Exponent E weights value by power of two
» Encoding
— MSB is sign bit
— exp field encodes E (note: encode !=is)
- frac field encodes M

. exp I frac

Floating point precisions

* Encoding

. exp I frac

— Sign bit; exp (encodes E): k-bit; frac (encodes M): n-bit
* Sizes
— Single precision: k = 8 exp bits, n= 23 frac bits
« 32 bits total
— Double precision: k = 11 exp bits, n = 52 frac bits
* 64 bits total
— Extended precision: k = 15 exp bits, n = 63 frac bits

* Only found in Intel-compatible machines
« Stored in 80 bits

— 1 bit wasted
» Value encoded - three different cases, depending on
value of exp

Normalized numeric values

« Condition
— exp #000...0and exp = 111...1

» EXponent coded as biased value
— E = Exp-—Bias
« EXp : unsigned value denoted by exp

* Bias : Bias value
— Single precision: 127 (Exp: 1...254, E: -126...127)
— Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
— in general: Bias = 2k1 - 1, where k is number of exponent bits

» Significand coded with implied leading 1

— M = 1.xxx...x, (1+f & f = 0.XxX,)
* XXX...X: bits of frac
* Minimum when 000...0 (M = 1.0)
« Maximum when 111...1 (M =2.0 —¢)
» Get extra leading bit for “free”

Normalized encoding example

+ Value
— Float F = 15213.0:
— 15213,, =11101101101101, =1.1101101101101, X 213

» Significand
— M=1.1101101101101,
— frac = 11011011011010000000000

* EXxponent
— E =13
— Bias =127
— exp = E + Bias = 140 =10001100,

Floating Point Representation:

Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0O0OO
140: 100 0110 O

15213: 110 1101 1011 01

Denormalized values

» Condition
— exp =000...0
+» Value

— EXxponent value E =1 - Bias
* Note: not simply E= — Bias

— Significand value M = 0.xxx...x, (0.f)
* XXX...X: bits of frac

» Cases

— exp = 000...0, frac = 000...0
* Represents value O
* Note that have distinct values +0 and -0

— exp = 000...0, frac = 000...0
* Numbers very close to 0.0

Special values

» Condition
— exp=111...1
» Cases

— exp =111...1, frac = 000...0

» Represents value °°(infinity)

« Operation that overflows

« Both positive and negative

« E.g.,1.0/0.0 =-1.0/-0.0 = +0, 1.0/-0.0 = -0

—exp =111...1, frac = 000...0
* Not-a-Number (NaN)

* Represents case when no numeric value can be
determined

e E.g., V-1, (© -)

Summary of FP real number encodings

—OOI -Normalized |-Denorm :/‘\:+Denorm +Normalized 00

|—Na'\| -0 +0 ﬂl

Tiny floating point example

» 8-bit Floating Point Representation
— the sign bit is in the most significant bit.
— the next four (k) bits are the exponent, with a bias of 7 (2k-1-1)
— the last three (n) bits are the frac

+ Same General Form as IEEE Format
— normalized, denormalized
— representation of 0, NaN, infinity

S exp frac

Values related to the exponent

Normalized
E = e - Bias

Denormalized
E =1 -Bias

%
0

odoUuld WMNEKEO

exp

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

128

(denorms)

(inf, NaN)

Dynamic range

s exp frac E Value
0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512 closest to zero
. 0 0000 010 -6 2/8%1/64 = 2/512
Denormalized / /6 /5
numbers 0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8%1/64 = 7/512 largest denorm
T i T
mall norm
0 0001 001 -6 9/8*1/64 = 9/512 smallest no
0 0110 110 -1 14/8%1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16 closest to 1 below
0 0111 000 0 8/8*1 =1
Normalized © 0111 001 0 9/8*1 = 9/8 closest to 1 above
numbers 0 0111 010 0 10/8*1 = 10/8
0 1110 110 7 14/8*128 = 224
1110 111 7 15/8*128 = 240 largest norm

0
........................ e e

Distribution of values

* 6-bit IEEE-like format

— e = 3 exponent bits
— f = 2 fraction bits

» Notice how the distribution gets denser toward zero.

-15

— Biasis 3

-10

-5 0

5

& Denormalized A Normalized

Infinity

10

15

Distribution of values (close-up view)

+ 6-bit IEEE-like format
— e = 3 exponent bits
— f =2 fraction bits
— Biasis 3

+ Note: Smooth transition between normalized and de-
normalized numbers due to definition E = 1 - Bias for
denormalized values

-0.5 0 0.5 1

¢ Denormalized A Normalized B Infinity

Interesting numbers

Description exp frac Numeric Value
Zero 00...00 00...00 0.0

Smallest Pos. Denorm. 00...00 00...01 2-1{2352} X 2—{126,1022}
* Single ~1.4 X104

 Double ~4.9 X 10324

Largest Denormalized 00...00 11...11 (1.0 —¢) X 2-{126,1022}
» Single ~1.18 X 1038

 Double ~ 2.2 X 10308

Smallest Pos. Normalized 00...01 00...00 1.0 X 2—{126,1022}

» Just larger than largest denormalized

One 01...11 00...00 1.0

Largest Normalized 11...10 11...11 (2.0 —¢) X 2 {127,1023}
* Single ~3.4 X 1038

* Double ~ 1.8 X 10308

Floating point operations

» Conceptual view
— First compute exact result

— Make it fit into desired precision
» Possibly overflow if exponent too large
« Possibly round to fit into frac

» Rounding modes (illustrate with $ rounding)
$1.40 $1.60 $1.50 $250 -—-$1.50

Zero $1 $1 $1 $2 -$1
Round down (-«) $1 $1 $1 $2 —$2
Round up (+«) $2 $2 $2 $3 -$1
Nearest Even (default) $1 $2 $2 $2 —$2

Note:
1. Round down: rounded result is close to but no greater than true result.
2. Round up: rounded result is close to but no less than true result.

Closer look at round-to-even

» Default rounding mode

— All others are statistically biased

« Sum of set of positive numbers will consistently be over-
or under- estimated

» Applying to other decimal places / bit positions

— When exactly halfway between two possible values
* Round so that least significant digit is even

— E.g., round to nearest hundredth
« 1.2349999 1.23 (Less than half way)
« 1.2350001 1.24 (Greater than half way)
« 1.2350000 1.24 (Half way—round up)
« 1.2450000 1.24 (Half way—round down)

Rounding binary numbers

» Binary fractional numbers
— “Even” when least significant bit is O
— Half way when bits to right of rounding position = 100...,

* Examples
— Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded Value
2 3/32 10.00011, 10.00, (<1/2—down) 2
2 3/16 10.00110, 10.01, (>1/2—up) 2 1/4
2718 10.11100, 11.00, (1/2—up) 3

2 5/8 10.10100, 10.10, (1/2—down) 2 1/2

FP multiplication

* Operands
- (_1)51 Ml 2E1 * (_1)82 M2 2E2
» EXxact result
— (-1)sM 2F
— Signs: s1”7s2
— Significand M: M1 * M2
— EXponent E: El+ E2
* Fixing
— If M = 2, shift M right, increment E
— If E out of range, overflow
— Round M to fit frac precision

* Implementation
— Biggest chore is multiplying significands

FP addition

* Operands
— (-1)s1 M1 2E1 |«— E1-E2 —]
— (-1)s2 M2 2E2 (—1)st M1
— Assume E1 > E2 D2 M2
» Exact Result
- (-1)sM 2E CIF M
— Sign s, significand M:
* Result of signed align & add
— EXponent E: El
* Fixing
— If M = 2, shift M right, increment E
— 1If M < 1, shift M left k positions, decrement E by k
— Overflow if E out of range
— Round M to fit frac precision

Mathematical properties of FP add

» Compare to those of Abelian Group
— Closed under addition? YES
* But may generate infinity or NaN
— Commutative? YES

— Associative? NO

« Overflow and inexactness of rounding
— (3.14+1e10)-1e10=0 (rounding)
— 3.14+(1e10-1e10)=3.14

— O is additive identity? YES
— Every element has additive inverse ALMOST
« Except for infinities & NaNs
* Monotonicity
— a2b = atc 2 b+c? ALMOST
» Except for NaNs

Math. properties of FP multiplication

» Compare to commutative ring

— Closed under multiplication? YES
* But may generate infinity or NaN
— Multiplication Commutative? YES
— Multiplication is Associative? NO
» Possibility of overflow, inexactness of rounding
— 1 is multiplicative identity? YES

— Multiplication distributes over addition? NO
» Possibility of overflow, inexactness of rounding
* Monotonicity

—az2b &c=20 = a*cz=b*c? ALMOST
» Except for NaNs

Floating point in C

» C guarantees two levels
— float single precision
— double double precision

» Conversions

int — float : maybe rounded

iInt — double : exact value preserved (double has greater
range and higher precision)

float — double : exact value preserved (double has greater
range and higher precision)

double — float : may overflow or be rounded
double — int : truncated toward zero (-1.999 — -1)
float — int : truncated toward zero

Floating point puzzles

» For each of the following C expressions, either:
— Argue that it is true for all argument values
— Explain why not true

int x = ...;
float £ = ...;
double d = ...;

Assume neither
d nor £ is NaN

x == (int) (double) x

x == (int) (float) x

d == (double) (float) d
f == (float) (double) £
f = -(-£f);

1.0/2 == 1/2.0

d*d >= 0.0

(f£+d) -f ==

Yes

No (x TMax)

No (d le40)
Yes
Yes
Yes

Yes (may overflow)

No (f = 1.0e20,
d=1.0,

f+d rounded to
1.0e20

Summary

» |[EEE Floating point has clear mathematical
properties
— Represents numbers of form M X 2E

— Not the same as real arithmetic
 Violates associativity/distributivity

« Makes life difficult for compilers & serious numerical
applications programmers

