
Fabián E. Bustamante, Spring 2010

Floating point

Today
IEEE Floating Point Standard

Rounding

Floating Point Operations

Mathematical properties

Next time
The machine model

2

IEEE Floating point

Floating point representations

– Encodes rational numbers of the form V=x*(2y)

– Useful for very large numbers or numbers close to zero

IEEE Standard 754 (IEEE floating point)

– Established in 1985 as uniform standard for floating point

arithmetic (started as an Intel’s sponsored effort)

• Before that, many idiosyncratic formats

– Supported by all major CPUs

Driven by numerical concerns

– Nice standards for rounding, overflow, underflow

– Hard to make go fast

• Numerical analysts predominated over hardware types in

defining standard

3

Fractional binary numbers

Representation

– Bits to right of ―binary point‖ represent fractional powers of 2

– Represents rational number:

bi bi–1 b2 b1 b0 b–1 b–2 b–3 b–j• • •• • • .

1

2

4

2i–1

2i

• • •

• • •

1/2

1/4

1/8

2–j

bk 2
k

k j

i



4

Fractional binary number examples

Value Representation

– 5-3/4 101.112

– 2-7/8 10.1112

– 63/64 0.1111112

Observations

– Divide by 2 by shifting right (the point moves to the left)

– Multiply by 2 by shifting left (the point moves to the right)

– Numbers of form 0.111111…2 represent those just below 1.0

• 1/2 + 1/4 + 1/8 + … + 1/2i + …  1.0

• We use notation 1.0 – ε to represent them

????

????

????

5

Representable numbers

Limitation

– Can only exactly represent numbers of the form x/2k

– Other numbers have repeating bit representations

Value Representation

– 1/3 0.0101010101[01]…2

– 1/5 0.001100110011[0011]…2

– 1/10 0.0001100110011[0011]…2

6

Floating point representation

Numerical form

– V = (–1)s * M * 2E

• Sign bit s determines whether number is negative or positive

• Significand M normally a fractional value in range [1.0,2.0).

• Exponent E weights value by power of two

Encoding

– MSB is sign bit

– exp field encodes E (note: encode != is)

– frac field encodes M

s exp frac

7

Floating point precisions

Encoding

– Sign bit; exp (encodes E): k-bit; frac (encodes M): n-bit

Sizes
– Single precision: k = 8 exp bits, n= 23 frac bits

• 32 bits total

– Double precision: k = 11 exp bits, n = 52 frac bits

• 64 bits total

– Extended precision: k = 15 exp bits, n = 63 frac bits

• Only found in Intel-compatible machines

• Stored in 80 bits

– 1 bit wasted

Value encoded – three different cases, depending on
value of exp

s exp frac

8

Normalized numeric values

Condition

– exp  000…0 and exp  111…1

Exponent coded as biased value

– E = Exp – Bias

• Exp : unsigned value denoted by exp

• Bias : Bias value

– Single precision: 127 (Exp: 1…254, E: -126…127)

– Double precision: 1023 (Exp: 1…2046, E: -1022…1023)

– in general: Bias = 2k-1 - 1, where k is number of exponent bits

Significand coded with implied leading 1

– M = 1.xxx…x2 (1+f & f = 0.xxx2)

• xxx…x: bits of frac

• Minimum when 000…0 (M = 1.0)

• Maximum when 111…1 (M = 2.0 – ε)

• Get extra leading bit for ―free‖

9

Normalized encoding example

Value

– Float F = 15213.0;

– 1521310 = 111011011011012 = 1.11011011011012 X 213

Significand

– M = 1.11011011011012

– frac = 11011011011010000000000

Exponent

– E = 13

– Bias = 127

– exp = E + Bias = 140 =100011002

Floating Point Representation:

Hex: 4 6 6 D B 4 0 0

Binary: 0100 0110 0110 1101 1011 0100 0000 0000

140: 100 0110 0

15213: 110 1101 1011 01

10

Denormalized values

Condition

– exp = 000…0

Value

– Exponent value E = 1 - Bias

• Note: not simply E= – Bias

– Significand value M = 0.xxx…x2 (0.f)

• xxx…x: bits of frac

Cases

– exp = 000…0, frac = 000…0

• Represents value 0

• Note that have distinct values +0 and –0

– exp = 000…0, frac  000…0

• Numbers very close to 0.0

11

Special values

Condition

– exp = 111…1

Cases

– exp = 111…1, frac = 000…0

• Represents value ∞(infinity)

• Operation that overflows

• Both positive and negative

• E.g., 1.0/0.0 = -1.0/-0.0 = +∞, 1.0/-0.0 = -∞

– exp = 111…1, frac  000…0

• Not-a-Number (NaN)

• Represents case when no numeric value can be

determined

• E.g., √-1, (∞ - ∞)

12

Summary of FP real number encodings

NaNNaN

+

0

+Denorm +Normalized-Denorm-Normalized

+0

13

Tiny floating point example

8-bit Floating Point Representation

– the sign bit is in the most significant bit.

– the next four (k) bits are the exponent, with a bias of 7 (2k-1-1)

– the last three (n) bits are the frac

Same General Form as IEEE Format

– normalized, denormalized

– representation of 0, NaN, infinity

s exp frac

02367

14

Values related to the exponent

Exp exp E 2E

0 0000 -6 1/64 (denorms)

1 0001 -6 1/64

2 0010 -5 1/32

3 0011 -4 1/16

4 0100 -3 1/8

5 0101 -2 1/4

6 0110 -1 1/2

7 0111 0 1

8 1000 +1 2

9 1001 +2 4

10 1010 +3 8

11 1011 +4 16

12 1100 +5 32

13 1101 +6 64

14 1110 +7 128

15 1111 n/a (inf, NaN)

Normalized

E = e - Bias

Denormalized

E = 1 - Bias

15

Dynamic range

s exp frac E Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512

0 0000 010 -6 2/8*1/64 = 2/512

…

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512

0 0001 000 -6 8/8*1/64 = 8/512

0 0001 001 -6 9/8*1/64 = 9/512

…

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1 = 1

0 0111 001 0 9/8*1 = 9/8

0 0111 010 0 10/8*1 = 10/8

…

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

closest to zero

largest denorm

smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized

numbers

Normalized

numbers

16

Distribution of values

6-bit IEEE-like format

– e = 3 exponent bits

– f = 2 fraction bits

– Bias is 3

Notice how the distribution gets denser toward zero.

-15 -10 -5 0 5 10 15

Denormalized Normalized Infinity

17

Distribution of values (close-up view)

6-bit IEEE-like format

– e = 3 exponent bits

– f = 2 fraction bits

– Bias is 3

Note: Smooth transition between normalized and de-

normalized numbers due to definition E = 1 - Bias for

denormalized values

-1 -0.5 0 0.5 1

Denormalized Normalized Infinity

18

Interesting numbers

Description exp frac Numeric Value

Zero 00…00 00…00 0.0

Smallest Pos. Denorm. 00…00 00…01 2– {23,52} X 2– {126,1022}

Single ~ 1.4 X 10–45

Double ~ 4.9 X 10–324

Largest Denormalized 00…00 11…11 (1.0 – ε) X 2– {126,1022}

Single ~ 1.18 X 10–38

Double ~ 2.2 X 10–308

Smallest Pos. Normalized 00…01 00…00 1.0 X 2– {126,1022}

Just larger than largest denormalized

One 01…11 00…00 1.0

Largest Normalized 11…10 11…11 (2.0 – ε) X 2 {127,1023}

Single ~ 3.4 X 1038

Double ~ 1.8 X 10308

19

Floating point operations

Conceptual view

– First compute exact result

– Make it fit into desired precision

• Possibly overflow if exponent too large

• Possibly round to fit into frac

Rounding modes (illustrate with $ rounding)
$1.40 $1.60 $1.50 $2.50 –$1.50

Zero $1 $1 $1 $2 –$1

Round down (-∞) $1 $1 $1 $2 –$2

Round up (+∞) $2 $2 $2 $3 –$1

Nearest Even (default) $1 $2 $2 $2 –$2

Note:

1. Round down: rounded result is close to but no greater than true result.

2. Round up: rounded result is close to but no less than true result.

20

Closer look at round-to-even

Default rounding mode

– All others are statistically biased

• Sum of set of positive numbers will consistently be over-

or under- estimated

Applying to other decimal places / bit positions

– When exactly halfway between two possible values

• Round so that least significant digit is even

– E.g., round to nearest hundredth

• 1.2349999 1.23 (Less than half way)

• 1.2350001 1.24 (Greater than half way)

• 1.2350000 1.24 (Half way—round up)

• 1.2450000 1.24 (Half way—round down)

21

Rounding binary numbers

Binary fractional numbers

– ―Even‖ when least significant bit is 0

– Half way when bits to right of rounding position = 100…2

Examples

– Round to nearest 1/4 (2 bits right of binary point)

Value Binary Rounded Action Rounded Value

2 3/32 10.000112 10.002 (<1/2—down) 2

2 3/16 10.001102 10.012 (>1/2—up) 2 1/4

2 7/8 10.111002 11.002 (1/2—up) 3

2 5/8 10.101002 10.102 (1/2—down) 2 1/2

22

FP multiplication

Operands

– (–1)s1 M1 2E1 * (–1)s2 M2 2E2

Exact result

– (–1)s M 2E

– Sign s: s1 ^ s2

– Significand M: M1 * M2

– Exponent E: E1 + E2

Fixing

– If M ≥ 2, shift M right, increment E

– If E out of range, overflow

– Round M to fit frac precision

Implementation

– Biggest chore is multiplying significands

23

FP addition

Operands

– (–1)s1 M1 2E1

– (–1)s2 M2 2E2

– Assume E1 > E2

Exact Result

– (–1)s M 2E

– Sign s, significand M:

• Result of signed align & add

– Exponent E: E1

Fixing

– If M ≥ 2, shift M right, increment E

– if M < 1, shift M left k positions, decrement E by k

– Overflow if E out of range

– Round M to fit frac precision

(–1)s1 M1

(–1)s2 M2

E1–E2

+

(–1)s M

24

Mathematical properties of FP add

Compare to those of Abelian Group

– Closed under addition? YES

• But may generate infinity or NaN

– Commutative? YES

– Associative? NO

• Overflow and inexactness of rounding

– (3.14+1e10)-1e10=0 (rounding)

– 3.14+(1e10-1e10)=3.14

– 0 is additive identity? YES

– Every element has additive inverse ALMOST

• Except for infinities & NaNs

Monotonicity

– a ≥ b  a+c ≥ b+c? ALMOST

• Except for NaNs

25

Math. properties of FP multiplication

Compare to commutative ring

– Closed under multiplication? YES

• But may generate infinity or NaN

– Multiplication Commutative? YES

– Multiplication is Associative? NO

• Possibility of overflow, inexactness of rounding

– 1 is multiplicative identity? YES

– Multiplication distributes over addition? NO

• Possibility of overflow, inexactness of rounding

Monotonicity

– a ≥ b & c ≥ 0  a *c ≥ b *c? ALMOST

• Except for NaNs

26

Floating point in C

C guarantees two levels

– float single precision

– double double precision

Conversions
– int → float : maybe rounded

– int → double : exact value preserved (double has greater

range and higher precision)

– float → double : exact value preserved (double has greater

range and higher precision)

– double → float : may overflow or be rounded

– double → int : truncated toward zero (-1.999 → -1)

– float → int : truncated toward zero

27

Floating point puzzles

For each of the following C expressions, either:

– Argue that it is true for all argument values

– Explain why not true

• x == (int)(double) x

• x == (int)(float) x

• d == (double)(float) d

• f == (float)(double) f

• f == -(-f);

• 1.0/2 == 1/2.0

• d*d >= 0.0

• (f+d)-f == d

int x = …;

float f = …;

double d = …;

Assume neither
d nor f is NaN

• Yes

• No (x = TMax)

• No (d = 1e40)

• Yes

• Yes

• Yes

• Yes (may overflow)

• No (f = 1.0e20,

d = 1.0;

f+d rounded to

1.0e20

28

Summary

IEEE Floating point has clear mathematical

properties

– Represents numbers of form M X 2E

– Not the same as real arithmetic

• Violates associativity/distributivity

• Makes life difficult for compilers & serious numerical

applications programmers

