Introduction to Computer Systems

Today:
» Welcome to EECS 213
» Lecture topics and assignments

Next time:
» Bits & bytes
» and some Boolean algebra

Fabian E. Bustamante, Spring 2010

Welcome to Intro. to Computer Systems

» Everything you need to know

http://aqualab.cs.northwestern.edu/classes/EECS213/eecs-213-s10.html

» Your instructor: Fabian E. Bustamante
* Your TA: John Otto

» Communication channels:
— Course webpage

— News
— eecs-213@cs

http://aqualab.cs.northwestern.edu/classes/EECS213/eecs-213-s10.html
http://aqualab.cs.northwestern.edu/classes/EECS213/eecs-213-s10.html
http://aqualab.cs.northwestern.edu/classes/EECS213/eecs-213-s10.html
http://aqualab.cs.northwestern.edu/classes/EECS213/eecs-213-s10.html
http://aqualab.cs.northwestern.edu/classes/EECS213/eecs-213-s10.html

Course theme

Abstraction is good, but don't forget reality!

» Courses to date emphasize abstraction
— Abstract data types, asymptotic analysis, ...

» Abstractions have limits
— Especially in the presence of bugs
— Need to understand underlying implementations

» Useful outcomes
— Become more effective programmers
— Prepare for later “systems” classes in CS & ECE

— What do you need?
« EECS 211 or equivalent & Experience with C or C++ - required
« EECS 311 - useful

Course perspective

» Most systems courses are builder-centric
— Operating Systems: Implement portions of an OS
— Compilers: Write compiler for simple language
— Networking: Implement and simulate network protocols

» This course Is programmer-centric

— To show how by knowing more about the underlying system,
one can be more effective as a programmer

— Enable you to
« Write programs that are more reliable and efficient
 Incorporate features that require hooks into OS

— Not just a course for dedicated hackers
* We bring out the hidden hacker in everyone

— Cover material in this course that you won’t see elsewhere

Textbooks

* Required
— Bryant & O’Hallaron, “Computer Systems: A Programmer’s
Perspective”, PH 2010.
* Recommended

— Kernighan & Ritchie (K&R), “The C Programming Language,
Second Edition”, PH 1988

— R. Stevens, “Advanced Programming in the Unix
Environment”, AW 1992; there’s a new edition by R. Stevens
and S. Rago, AW 2005

Course components

» Lectures
— Higher level concepts
— 10% of grade from class participation

* Labs (4)
— The heart of the course — in-depth understanding
— 12.5% of grade each
— Working on teams of 2
» Homework assignments (4)
— 10% of grade

*» Exams — midterm & final
— 20% of grade each

Policies

» Late policy
— 10% off per day (up to 5 days late)

» Cheating

— What is cheating?
« Sharing code: either by copying, retyping, looking at, or
supplying a copy of a file.
— What is NOT cheating?
» Helping others use systems or tools
* Helping others with high-level design issues
» Helping others debug their code

Facilities

» Tlab (Tech F-252, on the bridge to Ford) and
Wilkinson Lab (3" floor).

* You should all have accounts by now;
problems? contact root
(root@eecs.northwestern.edu)

* Need physical access to labs? Contact Carol
Surma (carol@rhodes.ece.northwestern.edu)

mailto:root@eecs.northwestern.edu
mailto:carol@rhodes.ece.northwestern.edu

Lab rationale

» Teach new skills and concepts

— Data — Computer arithmetic, digital logic
Out: 3/29 In: 4/14

— Bomb — Assembly language, using a debugger,
understanding the stack
Out: 4/14 In: 5/3

— Malloc — Data layout and organization, space/time
tradeoffs
Out: 5/3 In: 5/17

— Shell — Processes, concurrency, process control,
signals and signal handling
Out: 5/17 In: 6/2

Some topics covered

* Programs and data
— Bits arithmetic, assembly, representation of C control ...

*» Memory hierarch

— Memory technology, memory hierarchy, caches, disks, locality
» Linking & exceptional control flow

— Object files, dynamic linking, libraries, process control, ...
* Virtual memory

— Virtual mem., address translation, dynamic storage allocation

» Concurrency
— High level & low-level I/O, threads, ...

» Includes aspects of architecture and OS throughout

Hello World

» What happens and why when you run “hello”
on your system?

/*hello world*/
include <stdio.h>

int main()

{
printf (“hello, world\n”);

}

» Goal: introduce key concepts, terminology,
and components

Information is bits + context

» "Hello” is a source code
— Sequence of bits (O or 1)
— 8-bit data chunks are called Bytes

— Each byte has an integer value, corresponding to
some character (ASCII, e.g. ‘# — 35)

— Files made up of ASCII char. — text files
— All other files — binary files (e.g., 35 is a part of a
machine command)
» Context is important

— Same byte sequence might represent a character
string or machine instruction

Programs translated by other programs

unix> gcc -o hello hello.c I
printf.o

hello.c Pre- hello.i | Compiler | hello.s |Assembler| hello.o Linker hello
> przgesior > (ccl) > (as) > (ld) >
Source PP Modified Assembly Relocatable Executable
program source program object object
(text) program (text) programs program
(text) (binary) (binary)

* Pre-processing
— E.g., #include <stdio.h> is inserted into hello.i
+ Compilation (.s)
— Each statement is an assembly language program
* Assembly (.0)
— A binary file whose bytes encode mach. language instructions
» Linking
— Get printf() which resides in a separate precompiled object file

Hardware organization

CPU Register file Buses: transfer fixed-sized
|:> chunks of data (WORDS)
PC ALU Pentium: 4B bus
: System bus Me us

ﬁ -~ | CPU: Executes instructions

ill:"_l\ _ _
Bus interface stored in MM. PC - holds Ain
E address of machine-language Nory

instruction from memory

I/O Devices: System L
J connections to external Main Mem.: Temporary storage
world. device. Holds both a program
\/ | | /O bus and the data it manipulates.
J\/L N other devices such
USB Graphics Disk as network adapters
controller adapter controller

T !]

Mouse Keyboard Display hello executable
stored on disk

Running Hello

* Running hello

unix> ./hello
hello, world
unix>

* What's the shell?

» What does it do?
— prints a prompt
— waits for you to type command line
— loads and runs hello program ...

Running Hello

Register file Reading the hello command
::> from the keyboard
PC / ALU
]i‘
= 4 N _[——————1] AN
: N Main [“/hello”
Bus interlasa K IO % Ma
N L | memory
System: bus Memory bus
/O bus | | Expansion slots for
other devices such
USN Graphics Disk as network adapters
controlNr adapter controller

o !]

Mouse Keyboard Display
User types "hello"

Running Hello

Register file Shell program loads hello.exe
|:> iInto main memory
PC ALU
<::| "hello,world\n"

1L

. <::::> |/ Main
Bus interface prifige memory
System bus Memory bus
hello code
l | | | Expansion slots for
other devices such
USB Graphics as network adapters
controller adapter

o

Mouse Keyboard Display hello executable

stored on disk

Running Hello

Register file

PC

: ALU

The processor executes instructions
and displays “hello...”

Memory bus

"hello,world\n"

Main
memory

hello code

controller

USB

Mouse Keyboard

Display
"hello,world\n"

I/O bus | |

Disk
controller

A

Y

HH=>

Expansion slots for
other devices such
as network adapters

hello executable

Disk

stored on disk

Caches matter

» System spends a lot of time moving info. around

» Larger storage devices are slower than smaller ones
— Regqister file ~ 100 Bytes & Main memory ~ millions of Bytes

» Easier and cheaper to make processors run faster
than to make main memory run faster
— Standard answer — cache

CPU chip

ALU

Cache bus

Main
L2 cache< : : < :::: > Memory<:::>
(SRAM) > Bus interface bridge memory

System.bus Memory bus (DRAM)

Storage devices form a hierarchy

LO:

CPU registers hold words retrieved from

Storage at one level egister } cache memory.

serves as cache at

the next level L1 On-chip L1 L1 cache holds cache lines retrieved
cache (SRAI\/I) from the L2 cache.
L2 Off-chip L2 L2 cache holds cache lines
/ cache (SRAM) retrieved from memory.
4 Smaller,
faster, i s dick
and . Main memor ain memory holds dis
costlier L3 (DR Al\/l) y blocks retrieved from local
(per byte) disks.
storage
devices
L4 Local Secondary Storage Loc.al disks hOld. files
) | | disk retrieved from disks on
(ocal dis S) remote network servers.
L5: Remote secondary Storage

(distributed file systems, Web servers)

Operating system

» OS - a layer of software interposed between
the application program and the hardware

Application programs

Operating system

Processor

Main memory

I/0O devices

» Two primary goal
— Protect resources from misuse by applications

— Provide simple and uniform mechanisms for
manipulating low-level hardware devices

} Software

} Hardware

OS Abstractions

* Files — abstractions of I/O devices

» Virtual Memory — abstraction for main memory
and I/O devices

» Processes — abstractions for processor, main
memory, and I/O devices

Processes

/\

- R
| Virtual memory |
A E
- N

! Files
A :
r N

Processor Main memory I/O devices

Processes

» OS provides the illusion of a dedicated machine per
process

* Process
— OS’s abstraction of a running program

» Context switch
— Saving context of one process, restoring that of another one

— Distorted notion of time

shell
Time process

l Application code

- Context
\\ OS code } switch
l Application code

/ OS code } Context
_ : switch

Application code

hello
process

— - i - - = —— -

- ——f ==

hl

Virtual memory

. Oxffffffff Memory
» |llusion that each Kernel virtual memory Tinvisible to
0xc0000000 user code
process has User stack
exclusive use of (created at runtime)
a large main '
memaory I
Memory mapped region for orintf ()
® Example shared libraries function
) 0x40000000
— Virtual address
space for Linux T
Run-time heap
(created at runtime by malloc)

Read/write data

\ Loaded from
the hello

Read-only code and data executable file
0x08048000 J
Unused

0

Networking

» Talking to other systems
*» Network — seen as another I/O device

* Many system-level issues arise in presence of network
— Coping with unreliable media
— Cross platform compatibility
— Complex performance issues

I | Expansion slots
l | | | I/0O bus | |

USB Graphics Disk
controller adapter controller

<

Network
adapter

A 4 A 4

Mouse Keyboard Display Network
etwor

Conclusions

» A computer system is more than just hardware

— A collection of intertwined HW & SF that must
cooperate to achieve the end goal — running
applications

» The rest of our course will expand on this

