
Fabián E. Bustamante, Spring 2010

Introduction to Computer Systems

Today:

Welcome to EECS 213

Lecture topics and assignments

Next time:
Bits & bytes

and some Boolean algebra

2

Welcome to Intro. to Computer Systems

Everything you need to know
http://aqualab.cs.northwestern.edu/classes/EECS213/eecs-213-s10.html

Your instructor: Fabián E. Bustamante

Your TA: John Otto

Communication channels:

– Course webpage

– News

– eecs-213@cs

http://aqualab.cs.northwestern.edu/classes/EECS213/eecs-213-s10.html
http://aqualab.cs.northwestern.edu/classes/EECS213/eecs-213-s10.html
http://aqualab.cs.northwestern.edu/classes/EECS213/eecs-213-s10.html
http://aqualab.cs.northwestern.edu/classes/EECS213/eecs-213-s10.html
http://aqualab.cs.northwestern.edu/classes/EECS213/eecs-213-s10.html

3

Course theme

Abstraction is good, but don’t forget reality!

Courses to date emphasize abstraction
– Abstract data types, asymptotic analysis, …

Abstractions have limits
– Especially in the presence of bugs

– Need to understand underlying implementations

Useful outcomes
– Become more effective programmers

– Prepare for later “systems” classes in CS & ECE

– What do you need?

• EECS 211 or equivalent & Experience with C or C++ - required

• EECS 311 - useful

4

Course perspective

Most systems courses are builder-centric

– Operating Systems: Implement portions of an OS

– Compilers: Write compiler for simple language

– Networking: Implement and simulate network protocols

This course is programmer-centric

– To show how by knowing more about the underlying system,

one can be more effective as a programmer

– Enable you to

• Write programs that are more reliable and efficient

• Incorporate features that require hooks into OS

– Not just a course for dedicated hackers

• We bring out the hidden hacker in everyone

– Cover material in this course that you won‟t see elsewhere

5

Textbooks

Required

– Bryant & O‟Hallaron, “Computer Systems: A Programmer‟s

Perspective”, PH 2010.

Recommended

– Kernighan & Ritchie (K&R), “The C Programming Language,

Second Edition”, PH 1988

– R. Stevens, “Advanced Programming in the Unix

Environment”, AW 1992; there’s a new edition by R. Stevens

and S. Rago, AW 2005

6

Course components

Lectures

– Higher level concepts

– 10% of grade from class participation

Labs (4)

– The heart of the course – in-depth understanding

– 12.5% of grade each

– Working on teams of 2

Homework assignments (4)

– 10% of grade

Exams – midterm & final

– 20% of grade each

7

Policies

Late policy

– 10% off per day (up to 5 days late)

Cheating

– What is cheating?

• Sharing code: either by copying, retyping, looking at, or

supplying a copy of a file.

– What is NOT cheating?

• Helping others use systems or tools

• Helping others with high-level design issues

• Helping others debug their code

8

Facilities

Tlab (Tech F-252, on the bridge to Ford) and

Wilkinson Lab (3rd floor).

You should all have accounts by now;

problems? contact root

(root@eecs.northwestern.edu)

Need physical access to labs? Contact Carol

Surma (carol@rhodes.ece.northwestern.edu)

mailto:root@eecs.northwestern.edu
mailto:carol@rhodes.ece.northwestern.edu

9

Lab rationale

Teach new skills and concepts

– Data – Computer arithmetic, digital logic

Out: 3/29 In: 4/14

– Bomb – Assembly language, using a debugger,

understanding the stack

Out: 4/14 In: 5/3

– Malloc – Data layout and organization, space/time

tradeoffs

Out: 5/3 In: 5/17

– Shell – Processes, concurrency, process control,

signals and signal handling

Out: 5/17 In: 6/2

10

Some topics covered

Programs and data
– Bits arithmetic, assembly, representation of C control …

Memory hierarch
– Memory technology, memory hierarchy, caches, disks, locality

Linking & exceptional control flow
– Object files, dynamic linking, libraries, process control, …

Virtual memory
– Virtual mem., address translation, dynamic storage allocation

Concurrency
– High level & low-level I/O, threads, …

– …

Includes aspects of architecture and OS throughout

11

Hello World

What happens and why when you run “hello”

on your system?

Goal: introduce key concepts, terminology,

and components

/*hello world*/

include <stdio.h>

int main()

{

printf(“hello, world\n”);

}

12

Information is bits + context

“Hello” is a source code

– Sequence of bits (0 or 1)

– 8-bit data chunks are called Bytes

– Each byte has an integer value, corresponding to

some character (ASCII, e.g. „#‟ → 35)

– Files made up of ASCII char. → text files

– All other files → binary files (e.g., 35 is a part of a

machine command)

Context is important

– Same byte sequence might represent a character

string or machine instruction

13

Programs translated by other programs

Pre-processing
– E.g., #include <stdio.h> is inserted into hello.i

Compilation (.s)
– Each statement is an assembly language program

Assembly (.o)
– A binary file whose bytes encode mach. language instructions

Linking
– Get printf() which resides in a separate precompiled object file

Pre-

processor
(cpp)

hello.i Compiler
(cc1)

hello.s Assembler
(as)

hello.o Linker
(ld)

hellohello.c

Source

program

(text)

Modified

source

program

(text)

Assembly

program

(text)

Relocatable

object

programs

(binary)

Executable

object

program

(binary)

printf.o

unix> gcc –o hello hello.c

14

Hardware organization

Main

memory
I/O

bridge
Bus interface

ALU

Register fileCPU

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Mouse Keyboard Display

Disk

I/O bus Expansion slots for

other devices such

as network adapters

hello executable

stored on disk

PC

Buses: transfer fixed-sized

chunks of data (WORDS)

Pentium: 4B bus

I/O Devices: System

connections to external

world.

Main Mem.: Temporary storage

device. Holds both a program

and the data it manipulates.

CPU: Executes instructions

stored in MM. PC - holds

address of machine-language

instruction from memory

15

Running Hello

Running hello

What‟s the shell?

What does it do?

– prints a prompt

– waits for you to type command line

– loads and runs hello program …

unix> ./hello

hello, world

unix>

16

Running Hello

Main

memory
I/O

bridge
Bus interface

ALU

Register file

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Mouse Keyboard Display

Disk

I/O bus
Expansion slots for

other devices such

as network adapters

PC

“./hello"

User types "hello"

Reading the hello command

from the keyboard

17

Running Hello

Main

memory
I/O

bridge
Bus interface

ALU

Register file

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Mouse Keyboard Display

Disk

I/O bus Expansion slots for

other devices such

as network adapters

hello executable

stored on disk

PC

hello code

"hello,world\n"

Shell program loads hello.exe

into main memory

18

Running Hello

Main

memory
I/O

bridge
Bus interface

ALU

Register file

System bus Memory bus

Disk

controller

Graphics

adapter

USB

controller

Mouse Keyboard Display

Disk

I/O bus Expansion slots for

other devices such

as network adapters

hello executable

stored on disk

PC

hello code

"hello,world\n"

"hello,world\n"

The processor executes instructions

and displays “hello…”

19

Caches matter

System spends a lot of time moving info. around

Larger storage devices are slower than smaller ones

– Register file ~ 100 Bytes & Main memory ~ millions of Bytes

Easier and cheaper to make processors run faster

than to make main memory run faster

– Standard answer – cache

Main

memory

(DRAM)

Memory

bridge
Bus interface

L2 cache

(SRAM)

ALU

Register file

CPU chip

Cache bus

System bus Memory bus

L1

cache

(SRAM)

20

Storage devices form a hierarchy

Main memory holds disk

blocks retrieved from local

disks.

Registers

On-chip L1

cache (SRAM)

Main memory

(DRAM)

Local secondary storage

(local disks)

Remote secondary storage

(distributed file systems, Web servers)

Local disks hold files

retrieved from disks on

remote network servers.

Off-chip L2

cache (SRAM)

L1 cache holds cache lines retrieved

from the L2 cache.

CPU registers hold words retrieved from

cache memory.

L2 cache holds cache lines

retrieved from memory.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,

faster,

and

costlier

(per byte)

storage

devices

Storage at one level

serves as cache at

the next level

21

Operating system

OS – a layer of software interposed between

the application program and the hardware

Two primary goal

– Protect resources from misuse by applications

– Provide simple and uniform mechanisms for

manipulating low-level hardware devices

Application programs

Processor Main memory I/O devices

Operating system

Software

Hardware

22

OS Abstractions

Files – abstractions of I/O devices

Virtual Memory – abstraction for main memory

and I/O devices

Processes – abstractions for processor, main

memory, and I/O devices

Processor Main memory I/O devices

Processes

Files

Virtual memory

23

Processes

OS provides the illusion of a dedicated machine per

process

Process

– OS‟s abstraction of a running program

Context switch

– Saving context of one process, restoring that of another one

– Distorted notion of time

shell

process

hello

process

Application code

Time

Context

switch

Context

switch

OS code

Application code

OS code

Application code

24

Virtual memory

Illusion that each

process has

exclusive use of

a large main

memory

Example

– Virtual address

space for Linux

Kernel virtual memory

Memory mapped region for

shared libraries

Run-time heap

(created at runtime by malloc)

User stack

(created at runtime)

Unused
0

Memory

invisible to

user code0xc0000000

0x08048000

0x40000000

Read/write data

Read-only code and data

Loaded from
the hello

executable file

printf()

function

0xffffffff

25

Networking

Talking to other systems

Network – seen as another I/O device

Many system-level issues arise in presence of network

– Coping with unreliable media

– Cross platform compatibility

– Complex performance issues

Disk

controller

Graphics

adapter

USB

controller

Mouse Keyboard Display

Disk

I/O bus

Expansion slots

Network

adapter

Network

26

Conclusions

A computer system is more than just hardware

– A collection of intertwined HW & SF that must

cooperate to achieve the end goal – running

applications

The rest of our course will expand on this

